Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
31
всего попыток:
49
Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.
Задачу решили:
6
всего попыток:
7
Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:
С учетом различных ориентаций можно насчитать шесть видов тримино: Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом: При этом симметричные покрытия мы считали различными. Сколько существует подобного рода покрытий для прямоугольника 8 х 15?
Задачу решили:
7
всего попыток:
9
Рассмотрим равносторонний треугольник с проведенными в нем медианами, такой как треугольник размера 1 на рисунке:
Задачу решили:
5
всего попыток:
25
Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек. Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков. Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим три отрезка:
Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения. s0 = 290797 Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
Задачу решили:
7
всего попыток:
11
Ленточным прямоугольником толщины d назовем множество таких точек некоторого прямоугольника, расстояние которых до границы указанного прямоугольника не превышает d. Будем рассматривать только ленточные прямоугольники, стороны и толщина которых выражаются натуральными числами, а удвоенная толщина меньше каждой из сторон. Сколько существует различных ленточных прямоугольников, площадь которых не превышает 1000000?
Задачу решили:
9
всего попыток:
13
Назовем квадратной рамкой плоскую фигуру, представляющую собой квадрат с вырезанным в нем квадратным отверстием, симметричную относительно вертикальной и горизонтальной осей и составленную из единичных квадратов.
Задачу решили:
10
всего попыток:
14
У каждого из четырех прямоугольных треугольников со сторонами (9,12,15), (12,16,20), (5,12,13) и (12,35,37) длина одного из катетов равна 12. Можно доказать, что других прямоугольных треугольников с целыми сторонами и катетом длиной 12 нет. Таким образом, различных прямоугольных треугольников с целыми сторонами и катетом длиной 12 существует ровно четыре.
Задачу решили:
2
всего попыток:
4
Рассмотрим невыпуклый четырехугольник ABCD с диагоналями AC и BD. В каждой вершине входящая в нее диагональ образует два угла со сторонами четырехугольника. Например, в вершине A это будут углы BAC и CAD. Измерим величину этих восьми углов в градусах. Для некоторых четырехугольников полученные восемь чисел окажутся целыми. Будем называть такие четырехугольники невыпуклыми целыми четырехугольниками. Пример невыпуклого целого четырехугольника легко получить, если расположить точки A, B и C в вершинах правильного треугольника, а точку D в его центре. Другой пример получим, задав CAB=85°, BAD=55°, ABD=15°, CBD=50°, ACB=30°, BCD=25°, ADB=110°, BDC=105°.
(В расчетах можно считать угол целым, если его величина совпадает с целым числом с точностью до 10-9 градуса.)
Задачу решили:
5
всего попыток:
6
Пусть Ir – множество точек с целыми координатами x и y, лежащих внутри круга радиуса r, т.е. x2 + y2 < r2. При r=2 I2 содержит 9 точек (0,0), (1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1) и (1,-1). Рассмотрим треугольники, вершинами которых являются точки, принадлежащие I2. Среди них найдется ровно 8 треугольников, содержащих начало координат в своей внутренней области. Два из них показаны на рисунке, а остальные можно получить поворотами.
При r=3 существует ровно 360 треугольников с вершинами, принадлежащими I3, содержащих начало координат в своей внутренней области, а для r=5 таких треугольников будет 10600. Сколько найдется треугольников, все вершины которых принадлежат I500, а начало координат лежит в их внутренней области?
Задачу решили:
6
всего попыток:
9
Правильный треугольник со стороной 8 можно разбить на 64 одинаковых правильных треугольника, как показано на рисунке: Раскрасим теперь то, что получилось, в три цвета: красный, синий и зеленый. Будем считать допустимой такую раскраску, при которых никакие два соседних (имеющих общую сторону) единичных треугольника раскрашены в разные цвета. Треугольники, имеющие общую вершину, но не имеющие общей стороны, не считаются соседними. Обозначим через f(n) число различных допустимых раскрасок для треугольника со стороной n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|