Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
15
Натуральные числа x, y и z являются последовательными членами арифметической прогрессии. Для каждого n можно найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решение будет единственным. Например для n = 20, только одно решение 132 - 102 - 72 = 20. Для n < 100 всего 25 таких n для которых решение единственно. Найдите сколько таких n, меньших 100000000.
Задачу решили:
5
всего попыток:
18
В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, для которого можно сделать наибольшее количество таких ходов.
Задачу решили:
12
всего попыток:
20
Рассмотрим степенной ряд AF(x) = x * F1+x 2 * F2 + x3 * F3 + ... , где через Fk обозначено k-ое число Фибоначчи. (Числа Фибоначчи: 1, 1, 2, 3, 5, 8, ... ; то есть F1 = 1, F2 = 1, F3 = 2, Fk = Fk-1 + Fk-2.)
Мы будем называть число AF(x) золотым самородком, если x рациональное, так как с ростом AF(x) они встречаются все более и более редко. Так, например, десятый золотой самородок равен 74049690.
Задачу решили:
25
всего попыток:
64
В записи ***** вместо цифр в шестнадцатиричной системе счисления стоят звездочки, при этом первое слагаемое меньше второго. Какое количество вариантов решений существует?
Задачу решили:
15
всего попыток:
22
В каждой ячейке квадрата размера 4 на 4 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми четырехзначными числами. Сколько различных простых квадратов существует?
Задачу решили:
11
всего попыток:
23
Для натуральных чисел x, y, z их суммы и разности x + y, x - y, x + z, x - z, y + z и y - z являются квадратами натуральных чисел. Найдите минимальное значение x + y.
Задачу решили:
0
всего попыток:
6
В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, из которого такими ходами можно получить наибольшее количество различных простых чисел.
Задачу решили:
34
всего попыток:
63
Первые 10 миллионов простых чисел записаны последовательно в ряд. Какое количество нулей находится на четных местах?
Задачу решили:
34
всего попыток:
69
Очень простое число это такое простое число, любые несколько первых цифр которого также являются простыми числами. Например, простое число 2333 является очень простым, т.к. числа 2, 23 и 233 также являются простыми. Найдите максимальное очень простое число.
Задачу решили:
8
всего попыток:
11
Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке. Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313. Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи. А сколько обратимых чисел не превышает 1021?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|