Лента событий:
Vkorsukov
решил задачу
"Целочисленные точки на эллипсах - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
32
Для выражения (2a+1)n + (2a-1)n, для каждого конкретного a, остатки при делении этого выражения на a2 могут отличаться для разных n. Найдите сумму всех максимальных (при изменении n) остатков при делении выражения на a2, для a от 5 до 2009 включительно.
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
13
всего попыток:
34
На плоскости нарисована пятиконечная звезда с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?
Задачу решили:
12
всего попыток:
13
Игра проводится по следующим правилам. Вначале в коробку кладут два шара - синий и красный. За ход предлагается вынуть наугад один из шаров. Затем вынутый шар возвращается в коробку и вдобавок в коробку кладется два шара красного цвета. Таких ходов делается n. Игра считается выигранной, если количество вынутых синих больше чем вынутых красных. Для n=3 вероятность выиграть равна 5/24. Если игра стоит 1 рубль, то максимальный целый выигрыш, который крупье может предложить, чтобы в среднем выигрывать, 4 рубля. Найдите какой максимальный выигрыш можно предложить для аналогичной игры с 13 ходами.
Задачу решили:
16
всего попыток:
41
В пространстве размещен куб с вершинами в точках (0,0,0), (0,0,1000), (0,1000,0) и (1000,0,0). В куб вписаны 8 шаров диаметром 500. Сколько точек с целочисленными координатами лежат внутри куба, но не попадают внутрь шаров?
Задачу решили:
32
всего попыток:
49
Найдите сумму первых 100 цифр после запятой числа sin(sin(sin...(sin 1)...)) (sin повторяется 10 раз).
Задачу решили:
24
всего попыток:
68
На шахматную доску ставится один ферзь и кони. Какое максимальное количество коней можно поставить на доску, чтобы ни одна фигура не оказалась под боем?
Задачу решили:
10
всего попыток:
36
Первое, что приходит в голову, когда нужно возвести число в 15-ю степень, это просто выполнить четырнадцать умножений: n n ... n = n15 Если использовать "бинарный" метод, того же результата можно достичь, выполнив всего шесть умножений: n n = n2 Но оказывается, что количество умножений можно сократить до пяти: n n = n2 Определим m(k) как минимальное количество умножений, необходимое для вычисления nk; например, m(15) = 5. Найдите наименьшее значение k, для которого m(k)=12.
Задачу решили:
28
всего попыток:
53
Найдите сумму первых 2010 цифр после запятой произведения e·π (e - основание натурального логарифма).
Задачу решили:
22
всего попыток:
67
Найти сумму цифр первого простого натурального числа содержащего 2010 цифр.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|