Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
25
Найти сумму таких натуральных чисел n, для которых n2+1, n2+3, n2+7, n2+9, n2+13 и n2+21 являются последовательными простыми числами, и n < 150 000 000.
Задачу решили:
11
всего попыток:
33
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. В левом верхнем углу находится цифра 3, а сумма цифр каждого простого числа равна 23. Сколько таких различных простых квадратов существует?
Задачу решили:
15
всего попыток:
18
Как известно, любое простое число p вида 4k+1 представимо в виде суммы двух квадратов натуральных чисел, причем единственным способом. Найдите такое представление для числа p=990702638520320711872233636311814629, то есть найдите такие натуральные числа x<y, что x2+y2=p. В ответе укажите x.
Задачу решили:
33
всего попыток:
48
Определим для натурального числа n функцию S(n) равной сумме цифр в его десятичной записи. Найдите наименьшее M, такое, что среди простых чисел меньших 1000000, количество чисел для которых S(n)=M максимально.
Задачу решили:
10
всего попыток:
14
Легко видеть, что числа в первых пяти строках треугольника Паскаля не делятся на 5:
Однако, рассмотрев первые сто строк, мы найдем, что 2800 чисел из 5050 кратны пяти.
Задачу решили:
9
всего попыток:
19
Посмотрите на таблицу. Легко проверить, что максимальная сумма чисел, стоящих подряд вдоль одного из диагональных направлений, равна 16 (= 8 + 7 + 1).
Давайте теперь рассмотрим ту же задачу для таблицы большего размера. Для этого будем использовать генератор случайных чисел Фибоначчи с запаздываниями:
Задачу решили:
0
всего попыток:
0
Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Задачу решили:
4
всего попыток:
4
В числовом треугольнике, составленном из целых чисел, мы хотим найти такой числовой треугольник меньшего размера, чтобы сумма составляющих его чисел была максимальна.
s1 Искомый треугольник может начинаться с любого числа и продолжаться сколь угодно далеко вниз, включая в себя два примыкающих элемента из следующей строки, три элемента из строки следующей за нею, и т.д. Определим сумму треугольника как сумму всех входящих в него элементов.
Задачу решили:
59
всего попыток:
88
Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?
Задачу решили:
6
всего попыток:
7
Попробуем записать число 1/3 в виде суммы обратных квадратов различных натуральных чисел. Например, используя числа {2, 5, 6, 10, 15, 30}: Используя числа до 45 включительно, это можно сделать четырьмя способами. Вот соответствующие наборы чисел:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|