Лента событий:
Vkorsukov
решил задачу
"Целочисленные точки на эллипсах - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
48
Найти сумму первых 2010 цифр после запятой значения корня степени 2010 из 2010.
Задачу решили:
9
всего попыток:
19
Найдите максимально возможную площадь десятиугольника, стороны которого равны 1,2,3,4,5,6,7,8,9,10. Ответ умножьте на 100000 и округлите до ближайшего целого числа.
Задачу решили:
71
всего попыток:
145
При каком минимальном натуральном n число вида 9n-7n делится на 1000?
Задачу решили:
24
всего попыток:
44
Найдите количество простых чисел, больших 100, цифры каждого из которых в порядке их следования в десятичной записи образуют арифметическую прогрессию с ненулевой разностью.
Задачу решили:
6
всего попыток:
8
Рассмотрим "единичные" числа, числа состоящие из нескольких цифр "1". Обозначим R(k) число состоящее из k единиц; например, R(6) = 111111. Пусть n - натуральное и НОД(n, 10) = 1. Тогда можно показать, что всегда найдется k, такое что R(k) делится на n, обозначим A(n) минимальное из подходящих k. Например, A(7) = 6, А(41) = 5. Нас интересует отношение n/A(n). Для n<90, n для которого отношение n/A(n) минимально равно 61.
Задачу решили:
27
всего попыток:
45
Натуральное число N назовем "некрасивым", если оно не может быть представлено в виде суммы некоторого натурального числа M и всех цифр числа M. Найдите сумму всех "некрасивых" чисел, меньших 10 миллионов.
Задачу решили:
7
всего попыток:
10
Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111.
Задачу решили:
23
всего попыток:
65
Натуральное число N назовем "очень красивым", если оно может быть представлено в виде произведения некоторого натурального числа M и всех цифр числа M. Найдите сумму всех "очень красивых" чисел меньших 10 миллионов.
Задачу решили:
12
всего попыток:
12
Для некоторых простых чисел p можно найти такое натуральное n, для которого выражение n3+ n2p является точным кубом.
Задачу решили:
24
всего попыток:
37
Натуральное число N назовем "очень красивым", если оно может быть представлено в виде произведения некоторого натурального числа M и суммы всех цифр числа M. Найдите сумму всех "очень красивых" чисел меньших 10 миллионов.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|