img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Будем называть треугольник шестидесятиградусным, если он имеет хотя бы один угол, равный 60 градусам, а длины его сторон выражаются целыми числами.
Обозначим через r радиус вписанной в такой треугольник окружности.
Существует 1580 различных шестидесятиградусных треугольников с r ≤ 100.
Обозначим через T(n) количество различных шестидесятиградусных треугольников с r ≤ n.
Тогда T(100) = 1580T(1000) = 26231 и T(10000) = 394553.
Найдите T(2000000).

Задачу решили: 7
всего попыток: 13
Задача опубликована: 28.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Даны наборы чисел (xn, yn, rn), n=1,...100, задающие окружности с центром в точке с координатами (xn, yn)  и радиусом rn.  Эти числа выбираются так двухзначные числа состоящие из цифр после запятой  в записи числа π, стоящие соответственно для xn - на n и n+1 местах,  для yn - на n+2 и n+3 местах, и rn - на n+4 и n+5 местах. Таким образом, x1=14, y1=15, r1=92 и т.д. Найдите количество точек пересечения (включая точки касания) этих окружностей.

Задачу решили: 2
всего попыток: 58
Задача опубликована: 30.03.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображен большой круг. Его радиус равен 10000.

Внутри большого круга изображены три светло-коричневых круга поменьше. Эти три круга и большой круг попарно касаются друг друга.

Между соприкасающимися кругами образовались четыре промежутка, в которые тоже можно вписать круги. При этом появляются новые промежутки, в которые можно вписывать круги вновь и вновь сколь угодно долго.
Найдите суммарную площадь всех построенных таким образом кругов (кроме одного исходного круга самого большого размера), радиус которых больше 1. Результат округлите до целого.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 31.03.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Треугольники с целыми длинами строн называются почти прямоугольными, если a2+b2=c2±1 (a≤b≤c). Сколько существут различных почти прямоугольных треугольников с периметром меньшем 1015.  

Задачу решили: 6
всего попыток: 6
Задача опубликована: 06.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч.
На рисунке показан путь луча, который прошел сквозь щель в вершине C, 11 раз отразился от зеркал и вышел из треугольника через ту же вершину C. Существует всего 2 пути, по которым луч может войти и выйти через вершину C, испытав при этом 11 отражений: один – это тот, что изображен на рисунке, а другой – направленный ему навстречу.

Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Существует 40 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал 697 раз и выйти из треугольника через ту же вершину.
Существует 9355 траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 700 раз и выйти из треугольника через ту же вершину.
Сколько существует траекторий, по которым луч может пройти через вершину C, отразиться от зеркал не более 100000 раз и выйти из треугольника через ту же вершину.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 20.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте.

На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932.

Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).

Задачу решили: 4
всего попыток: 6
Задача опубликована: 25.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть на координатной плоскости точка O(0,0) - начало координат, а C - точка с координатами (r,r).
Обозначим через N(r) количество тупоугольных треугольников OBC, у которых сторона OB короче стороны OC, а обе координаты вершины B - целые числа.

Например, N(1)=2, и N(4)=60.

Найдите N(227).

Задачу решили: 5
всего попыток: 6
Задача опубликована: 06.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: katalama (Иван Максин)

При строительстве стены используются кирпичи размером 2×1 и 3×1 (горизонтальный размер × вертикальный размер). Чтобы в стене не образовалась трещина, стыки между кирпичами не должны располагаться непосредственно друг над другом.
 
На рисунке красным цветом показано недопустимое расположение стыков.
Существует всего 8 допустимых способов построить стену длиной 9 и высотой 3 единицы. (Симметричные способы считаются различными.)
Найдите, сколькими способами можно построить квадратную стену, длина и высота которой равны 32 единицам. В качестве ответа укажите 8 младших разрядов результата.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 23.05.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Будем строить последовательность строк D0, D1,… Dn …следующим образом.
Пусть D0, - двухбуквенная строка "Fa". Для n, больших нуля, построим строку Dn, заменяя все вхождения символов "a" и "b" в строке Dn-1 следующим образом:
"a"  "aRbFR"
"b"  "LFaLb"
Тогда получим, что D0 = "Fa", D1 = "FaRbFR", D2 = "FaRbFRRLFaLbFR", и так далее.
Теперь предположим, что полученная строка является программой для плоттера, в которой символ "F" означает движение пера вперед на единицу, "R" – поворот на 90 градусов направо, а "L" – поворот на 90 градусов влево. Символы "a" и "b" на рисунок не влияют. Начальное положение пера – в начале координат (0,0), а начальное направление движения – вверх (0,1).
Получив на вход строку Dn, плоттер вычертит замысловатую ломаную, называемую "Дракон Хартера – Хейтуэя порядка n". Например, на рисунке ниже показан дракон D10. Если по команде "F" перо сдвигалось на один шаг, то в отмеченную голубым точку оно попало после 500 шагов. Ее координаты – (18,16).

Теперь представим, что плоттер начертил дракона 50-го порядка. На нем отметили точки  L и M, в которые перо попало, соответственно, после 1012 и 1013 шагов. Найдите расстояние |LM|. Результат округлите вниз до целого.

Задачу решили: 5
всего попыток: 10
Задача опубликована: 13.06.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Назовем треугольник с целочисленными сторонами a≤b≤c слегка остроугольным, если его стороны удовлетворяют равенству
a2 + b2 = c2 + 1.
Найдите сумму периметров всех различных слегка остроугольных треугольников, стороны которых не превышают 10 000 000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.