Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
20
Если из формулировки этой задачи удалять буквы, то могут оставаться буквы, которые последовательно составляют названия цифр: ноль, один, два, три, четыре, пять, шесть, семь, восемь, девять. За каждый ход можно оставить буквы только для одной цифры. Сколько таких ходов можно сделать?
Задачу решили:
19
всего попыток:
66
На шахматной доске стоят 4 коня на разных клетках одного цвета. За один ход все кони одновременно перемещаются на другую клетку, при этом на одной клетке могут находиться несколько коней. Необходимо собрать всех коней на одной клетке за минимальное число ходов. Какое наибольшее число ходов придется сделать при наихудшем изначальным расположении коней?
Задачу решили:
12
всего попыток:
33
Рассмотрим равнобедренный треугольник с основанием b = 16 и боковыми сторонами L = 17.
Задачу решили:
11
всего попыток:
16
Пусть (a, b, c) - тройка сторон прямоугольного треугольника и c гипотенуза. Причем a, b и с - натуральные. Возможно сложить четыре таких треугольника вместе, чтобы составить квадрат с квадратным отверстием. Например, 4 треугольника со сторонами (3, 4, 5) могут быть сложены вместе чтобы составить квадрат 5 на 5 с отверстием 1 на 1 посредине. При этом квадрат 5 на 5 можно замостить 25 квадратами 1 на 1 (такими как отверстие). А для треугольника (5, 12, 13) отверстие будет 7 на 7, но квадратами 7 на 7 невозможно покрыть квадрат 13 на 13. Какова сумма периметров прямоугольных треугольников (a, b, c), таких что a < b, длины сторон взаимнопросты (НОД(a, b, c) = 1) и для которых можно квадрат со стороной c покрыть квадратами равными образующемуся отверстию, среди прямоугольных треугольников с периметрами меньшими 100000000?
Задачу решили:
6
всего попыток:
14
Начальная конфигурация головоломки Рубика "магические квадратики" выглядит так:
Разрешены такие преобразования:
Конфигурацией головоломки называется любое положение квадратиков, которое возможно получить при помощи указанных преобразований. За какое минимальное количество ходов можно гарантированно преобразовать произвольную конфигурацию в начальную.
Задачу решили:
6
всего попыток:
25
Шахматный осел - это фигура, которая за один ход из клетки с координатами (x,y) может пойти в одну из 4-х клеток (x+2,y), (x,y+3), (x+1,y-1), (x-1,y). На шахматную доску 8х8 ставят случайным образом четырех ослов на разные клетки. Каждую секунду все ослы одновременно делают ход, при этом на одной клетке могут находиться несколько ослов. Необходимо собрать всех ослов на одной клетке за минимальное время. Найдите математическое ожидание этого минимального времени (в секундах) и выведите его с девятью знаками после запятой, то есть в формате a.bcdefghij.
Задачу решили:
8
всего попыток:
11
Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке. Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313. Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи. А сколько обратимых чисел не превышает 1021?
Задачу решили:
5
всего попыток:
13
Типография каждый день выполняет 16 заказов. Для каждого заказа необходим лист специальной бумаги формата A5.
Задачу решили:
4
всего попыток:
4
На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое. Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров. Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар. Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех). То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n. Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.
Задачу решили:
5
всего попыток:
22
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел. Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения. Сколько существует различных "круговых" цепочек состоящих из всех костяшек?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|