Лента событий:
Vkorsukov
решил задачу
"Целочисленные точки на эллипсах - 2"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
22
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел. Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения. Сколько существует различных "круговых" цепочек состоящих из всех костяшек?
Задачу решили:
5
всего попыток:
16
Посмотрим на десятичную запись первых неотрицательных целых чисел:
Задачу решили:
21
всего попыток:
48
Индийский математик Д. Р. Капрекар известен своими работами по теории чисел. Одна из его работ посвящена так называемому преобразованию Капрекара. Рассмотрим следующую операцию. Пусть задано число x. Пусть M - наибольшее число, которое можно получить из x перестановкой его цифр, а m - наименьшее число (это число может содержать ведущие нули). Обозначим как K(x) разность M - m, дополненную при необходимости ведущими нулями так, чтобы число цифр в ней было равно числу цифр в x.
Задачу решили:
8
всего попыток:
19
Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:
А сколько решений будет иметь это уравнение при n=16?
Задачу решили:
0
всего попыток:
1
Блоха запрыгнула на круглый стол для игры в "Что? Где? Когда?" незадолго до начала очередной игры. На секторах стола уже были разложены конверты с вопросами. Блоха решила заранее прочитать все вопросы, чтобы у нее было больше времени подумать над ответами. Круглый игровой стол поделен на 109 секторов, занумерованных по часовой стрелке числами от 1 до 109. Блоха запрыгнула на первый сектор. С него она может либо перебежать на соседний, либо перепрыгнуть через 2 сектора (например, если стол делится на 12 секторов, то с сектора номер 1 блоха может за одно действие попасть на сектора с номерами 2, 4, 10 и 12). Блоха хочет побывать на каждом секторе ровно 1 раз и вернуться обратно на первый сектор, откуда она спрыгнет и убежит думать над вопросами. Определите, сколькими способами она сможет совершить свое путешествие. Выведите в качестве ответа количество способов по модулю 109+9.
Задачу решили:
8
всего попыток:
9
Выберем три различные буквы из русского алфавита (содержащего, как известно, 33 буквы). Из них сформируем строку длиной 3 знака, например, 'абв', 'пар' или 'юэь'.
Задачу решили:
10
всего попыток:
14
Составное число может быть разложено на множители разными способами. Например, (если не учитывать умножение на 1) число 24 может быть разложено на множители семью различными способами: Теперь для каждого разложения числа 24 найдем сумму цифровых корней сомножителей:
Максимальная сумма цифровых корней для всех разложений числа 24 равна 11. Обозначим максимальную сумму цифровых корней для всех разложений числа n через mdrs(n). Найдите наименьшее n, для которого mdrs(n)>60.
Задачу решили:
4
всего попыток:
6
Рассмотрим строку, состоящую из последовательных первых 109 знаков числа π после запятой. Найти минимальное число не входящее в качестве подстроки в эту строку.
Задачу решили:
11
всего попыток:
17
Для натурального N вычислим N!, отбросим все нули справа, возьмем число, образованное четырьмя последними цифрами, и обозначим его через f(n). Например: 9! = 362880 и f(9)=6288 10! = 3628800 и f(10)=6288 20! = 2432902008176640000 и f(20)=7664 Найдите f(1014).
Задачу решили:
0
всего попыток:
1
Найти наименьшее натуральное число x такое, что существует целое y>x и (x+i)/(y+j) являются сократимыми дробями для всех i,j = 0,1,2,...,9.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|