![]()
Лента событий:
vochfid решил задачу "Площадь проекции" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
22
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел. Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения. Сколько существует различных "круговых" цепочек состоящих из всех костяшек? ![]()
Задачу решили:
5
всего попыток:
16
Посмотрим на десятичную запись первых неотрицательных целых чисел: ![]()
Задачу решили:
21
всего попыток:
48
Индийский математик Д. Р. Капрекар известен своими работами по теории чисел. Одна из его работ посвящена так называемому преобразованию Капрекара. Рассмотрим следующую операцию. Пусть задано число x. Пусть M - наибольшее число, которое можно получить из x перестановкой его цифр, а m - наименьшее число (это число может содержать ведущие нули). Обозначим как K(x) разность M - m, дополненную при необходимости ведущими нулями так, чтобы число цифр в ней было равно числу цифр в x. ![]()
Задачу решили:
8
всего попыток:
19
Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:
А сколько решений будет иметь это уравнение при n=16? ![]()
Задачу решили:
0
всего попыток:
1
Блоха запрыгнула на круглый стол для игры в "Что? Где? Когда?" незадолго до начала очередной игры. На секторах стола уже были разложены конверты с вопросами. Блоха решила заранее прочитать все вопросы, чтобы у нее было больше времени подумать над ответами. Круглый игровой стол поделен на 109 секторов, занумерованных по часовой стрелке числами от 1 до 109. Блоха запрыгнула на первый сектор. С него она может либо перебежать на соседний, либо перепрыгнуть через 2 сектора (например, если стол делится на 12 секторов, то с сектора номер 1 блоха может за одно действие попасть на сектора с номерами 2, 4, 10 и 12). Блоха хочет побывать на каждом секторе ровно 1 раз и вернуться обратно на первый сектор, откуда она спрыгнет и убежит думать над вопросами. Определите, сколькими способами она сможет совершить свое путешествие. Выведите в качестве ответа количество способов по модулю 109+9. ![]()
Задачу решили:
8
всего попыток:
9
Выберем три различные буквы из русского алфавита (содержащего, как известно, 33 буквы). Из них сформируем строку длиной 3 знака, например, 'абв', 'пар' или 'юэь'. ![]()
Задачу решили:
10
всего попыток:
14
Составное число может быть разложено на множители разными способами. Например, (если не учитывать умножение на 1) число 24 может быть разложено на множители семью различными способами: Теперь для каждого разложения числа 24 найдем сумму цифровых корней сомножителей:
Максимальная сумма цифровых корней для всех разложений числа 24 равна 11. Обозначим максимальную сумму цифровых корней для всех разложений числа n через mdrs(n). Найдите наименьшее n, для которого mdrs(n)>60. ![]()
Задачу решили:
4
всего попыток:
6
Рассмотрим строку, состоящую из последовательных первых 109 знаков числа π после запятой. Найти минимальное число не входящее в качестве подстроки в эту строку. ![]()
Задачу решили:
11
всего попыток:
17
Для натурального N вычислим N!, отбросим все нули справа, возьмем число, образованное четырьмя последними цифрами, и обозначим его через f(n). Например: 9! = 362880 и f(9)=6288 10! = 3628800 и f(10)=6288 20! = 2432902008176640000 и f(20)=7664 Найдите f(1014). ![]()
Задачу решили:
0
всего попыток:
1
Найти наименьшее натуральное число x такое, что существует целое y>x и (x+i)/(y+j) являются сократимыми дробями для всех i,j = 0,1,2,...,9.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|