img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 54
всего попыток: 91
Задача опубликована: 30.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Найти миниальное n такое, что: 1+1/2+1/3+1/4+...+1/n > 16

Задачу решили: 6
всего попыток: 7
Задача опубликована: 30.08.10 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
баллы: 100

Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:

 

С учетом различных ориентаций можно насчитать шесть видов тримино:

Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом:

При этом симметричные покрытия мы считали различными.

Сколько существует подобного рода покрытий для прямоугольника 8 х 15?

Задачу решили: 7
всего попыток: 15
Задача опубликована: 06.09.10 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
баллы: 100

В шестнадцатеричной системе счисления числа представляют с помощью 16 цифр:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Шестнадцатеричная запись AF соответствует десятичному числу 10x16+15=175.
В трехзначных шестнадцатеричных числах AA0 и A0A цифра 0 использована 1 раз, а цифра A - 2 раза. Как и в десятичных числах, ноль слева не пишется.
Сколько найдется шестнадцатеричных чисел, в записи которых не более 16 цифр, цифра 0 использована хотя бы один раз, а цифра A использована более 1 раза?

Ответ представьте в шестнадцатеричной системе счисления.

((A,B,C,D,E и F в верхнем регистре, без каких-либо дополнительных символов и нолей слева, например, 1A3F - правильный формат, а 1a3f, 0x1a3f, $1A3F, #1A3F и 0000001A3F - неправильно))
Задачу решили: 26
всего попыток: 64
Задача опубликована: 06.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько чисел начинается с цифры 1 среди чисел 2n, где n=0, 1,...,109?

Задачу решили: 7
всего попыток: 9
Задача опубликована: 13.09.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Рассмотрим равносторонний треугольник с проведенными в нем медианами, такой как треугольник размера 1 на рисунке:


 
В треугольнике размера 1 можно найти 16 треугольников различной величины, формы, положения и ориентации.
Используя треугольники размера 1 в качестве элементов, можно составить из них треугольники большего размера, такие как треугольник размера 2 на рисунке. В треугольнике размера 2 можно насчитать 104 треугольника различной величины, формы, положения и ориентации.
Легко видеть, что треугольник размера 2 состоит из четырех треугольников размера 1, треугольник размера 3 – из 9 треугольников размера 1, а треугольник размера n - из n2 треугольников размера 1.
Обозначим через T(n) количество треугольников различной величины, формы, положения и ориентации, которые можно найти в треугольнике размера n.
Получим:
T(1) = 16,
T(2) = 104


Найдите Т(50).

Задачу решили: 15
всего попыток: 41
Задача опубликована: 13.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 300
Лучшее решение: Kruger

Сколько чисел начинается с цифры 9 среди чисел 2n, где n=0, 1,...,109?

Задачу решили: 29
всего попыток: 58
Задача опубликована: 20.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

13-е число месяца может быть любым днем недели с понедельника по воскресенье, казалось бы с одинаковой вероятностью, примерно равной 1/7=0,142857... (в случае равномерного распределения). Найдите реальную долю попадания 13-го числа на пятницу с 2000-го года по 3000-й год включительно (по григорианскому календарю).

(В ответе укажите первые шесть цифр после запятой, без округления. Ноль и запятую не нужно вводить.)
Задачу решили: 7
всего попыток: 22
Задача опубликована: 20.09.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Сколько существует таких 20-значных чисел, что в их десятичной записи сумма любых трех последовательных цифр не меньше шести, но не превышает одиннадцати?
(Числа не могут начинаться с нуля)

Задачу решили: 33
всего попыток: 42
Задача опубликована: 27.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sveark (Янус Невструев)

Найти количество натуральных чисел меньших 1 миллиарда, которые делятся нацело на все входящие в его запись цифры.

Задачу решили: 5
всего попыток: 25
Задача опубликована: 27.09.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек.

Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков.

Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим  три отрезка:

  • отрезок L1 с концами (27, 44) и (12, 32)
  • отрезок L2 с концами (46, 53) и (17, 62)
  • отрезок L3 с концами (46, 70) и (22, 40)

Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения.

Будем теперь последовательно строить отрезки и подсчитывать их истинные точки пересечения. Чтобы построить n отрезков, нам нужно 4n координат их концов. Будем генерировать эти числа случайным образом с помощью алгоритма Блюма - Блюма – Шуба:

s0 = 290797
sn+1 = sn × sn (mod 50515093)
tn = sn (mod 200)

Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
(t1, t2) и (t3, t4)
Четыре первых числа, сгенерированные нашим алгоритмом, будут t1=127, t2=144, t3=112, t4=132, и концы первого отрезка будут иметь координаты (127,144) и (112,132).

Чтобы количество различных истинных точек пересечения превысило одну тысячу, нужно сгенерировать ровно сто отрезков: действительно, первые 99 отрезков будут иметь 992 различных истинных точек пересечения, а первые 100 отрезков – уже 1003.
Сколько необходимо сгенерировать отрезков, чтобы количество различных истинных точек пересечения превысило миллион?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.