Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
14
всего попыток:
17
Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек. Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203. Можно подсчитать, что f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443 Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000
Задачу решили:
7
всего попыток:
11
Как известно, последовательность Фибоначчи определяется рекуррентно: f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1. Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106. Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.
Задачу решили:
3
всего попыток:
3
Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом. Проигрывает тот, кто не может сделать очередной ход. Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c). Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными. Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция. Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.
Задачу решили:
6
всего попыток:
14
Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени: (√2+√3)2 = 9.898979485566356... (√2+√3)4 = 97.98979485566356... (√2+√3)6 = 969.998969071069263... (√2+√3)8 = 9601.99989585502907... (√2+√3)10 = 95049.999989479221... (√2+√3)12 = 940897.9999989371855... (√2+√3)14 = 9313929.99999989263... (√2+√3)16 = 92198401.99999998915... Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1. В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n. Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013. Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.
Задачу решили:
3
всего попыток:
4
Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:
Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}. Пусть t(n) — количество таких последовательностей длины n. Тогда t(10) = 86195 и t(20) = 5227991891. Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.
Задачу решили:
0
всего попыток:
0
Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n. Например, U( 1234567890, 107-10) = 24. Найдите U(1234567890987654321, 1012-10).
Задачу решили:
4
всего попыток:
15
Рассмотрим последовательность y0, y1, y2,..., где yi - 32-битные случайные целые числа, т.е. 0≤yi<232, и все значения y равновероятны. Последовательность xi задается рекурсивно следующим образом:
Ясно, что в конце концов появится такой индекс N для которого xi окажется равным 232-1 при всех i≥N. Найдите математическое ожидание величины N2. Результат умножьте на миллион и округлите вниз до целого.
Задачу решили:
1
всего попыток:
2
В этой задаче рассматривается еще одна игра, похожая на ним, где два игрока по очереди берут камни из двух куч. Каждым ходом игрок берет камни из одной кучи в количестве, кратном количеству камней в другой куче. Как обычно, проигрывает тот, кто не может сделать очередной ход, т. е. когда в одной из куч камней не осталось. Опишем начальную позицию в виде упорядоченной пары чисел. Например, пара (6, 14) соответствует положению, при котором в меньшей куче 6 камней, а в большей — 14. В этом случае первый игрок может взять из большей кучи 6 или 12 камней. Выигрышной называется позиция, которая позволяет первому игроку выиграть при верном выборе стратегии. Остальные позиции называются проигрышными. Например, позиции (1,5), (2,6) и (3,12) — выигрышные, поскольку первый игрок может первым же ходом забрать все камни из второй кучи. Позиции (2,3) и (3,4) — проигрышные, поскольку при любом ходе первого игрока второй участник получает выигрышную позицию. Обозначим через Z(N) сумму (yi-xi) для всех проигрышных позиций (xi,yi), 0 < xi< yi ≤ N. Можно проверить, что Z(10) = 27 и Z(104) = 24319983959. Найдите остаток от деления Z(1016) на 710.
Задачу решили:
1
всего попыток:
1
Рассмотрим пару последовательностей an и s n , заданных следующим образом: a1 = 1, s1 = 1, an = sn-1 mod n, sn = sn-1+ an×n. (Здесь и далее "x mod y" означает остаток от деления x на y.) Первые 10 элементов последовательности an: 1,1,0,3,0,3,5,4,1,9. Первые 10 элементов последовательности sn: 1,3,3,15,15,33,68,100,109,199. Обозначим через h(N,M) количество таких пар (p,q), для которых 1≤p≤q≤N и (sp + sp+1 +… + sq-1 + sq ) mod M = 0 Можно проверить, что h(10,10)=5, а соответствующие пары – (1,6), (4,5), (4,9), (6,9) и (8,8). h(104,103)= 107796. Найдите h(1012,106).
Задачу решили:
1
всего попыток:
1
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|