Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
3
всего попыток:
4
Будем строить последовательность строк D0, D1,… Dn …следующим образом. Теперь представим, что плоттер начертил дракона 50-го порядка. На нем отметили точки L и M, в которые перо попало, соответственно, после 1012 и 1013 шагов. Найдите расстояние |LM|. Результат округлите вниз до целого.
Задачу решили:
9
всего попыток:
15
Будем называть натуральное число A александрийским, если есть такие целые p, q, r, что
Задачу решили:
10
всего попыток:
33
В трактирах Зурбагана принимают любую валюту. В конце дня трактирщик решил выложить мелочь на стол и выяснил, что у него 20 монет различного радиуса: 30,31,32 … 47,48 и 49 мм. Он попробовал выложить монеты в ряд вплотную к краю стола, как показано на фотографии, и задумался: какова минимальная длина стола, на котором поместятся все монеты?
Задачу решили:
5
всего попыток:
10
Назовем треугольник с целочисленными сторонами a≤b≤c слегка остроугольным, если его стороны удовлетворяют равенству
Задачу решили:
5
всего попыток:
13
Назовем треугольник с целочисленными сторонами a≤b≤c слегка тупоугольным, если его стороны удовлетворяют равенству
Задачу решили:
0
всего попыток:
1
Возьмем вещественное число x.
Задачу решили:
10
всего попыток:
14
Последовательность 1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201 ... определена следующим образом:
Задачу решили:
5
всего попыток:
8
Функция бланманже определена на промежутке [0, 1] следующим образом: Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Задачу решили:
2
всего попыток:
2
В игру "Погоня" играет четное количество игроков за круглым столом двумя игральными костями.
Задачу решили:
1
всего попыток:
2
Пусть Sn – правильный n-угольник, вершины которого vk (k = 1,2,…,n) имеют координаты: Как обычно, под многоугольником понимается фигура, включающая и ограничивающую замкнутую ломаную, и внутреннюю область. Рассмотрим фигуру S1500 + S1501 + … + S2500, представляющую собой многоугольник. Сколько у этого многоугольника сторон длиннее, чем 1/200?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|