Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
6
всего попыток:
10
Напомним, что функция Эйлера φ(n) определена для натуральных аргументов n и равна количеству натуральных чисел, не больших n и взаимно простых с ним.
Задачу решили:
4
всего попыток:
8
Дано множество простых чисел, не превышающих 5000:
Задачу решили:
5
всего попыток:
9
Найдите количество непустых подмножеств множества {1250250, 2250249, 3250248,... , 2502492, 2502501}, у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.
Задачу решили:
5
всего попыток:
7
Тройку натуральных чисел (a,b,c) будем называть тройкой Кардано, если она удовлетворяет условию:
Например, тройка (2,1,5) является тройкой Кардано.
Задачу решили:
3
всего попыток:
5
Для заданного множества точек на плоскости М определим выпуклую дыру H как многоугольник, все вершины которого принадлежат множеству М, и ни одна точка из М не содержится во внутренней области H (на сторонах многоугольника точки лежать могут). Красным цветом показана выпуклая дыра наибольшей площади: ее площадь составляет 1049694,5 единиц, и для данного множества М нет выпуклых дыр с большей площадью. Для нашего примера мы использовали первые 20 точек, полученные с помощью генератора случайных чисел следующим образом. Точка с номером k имеет координаты (T2k-1, T2k), а псевдослучайные числа Tk получены при помощи рекуррентной формулы: Sn+1 = Sn2 mod 50515093, Тогда координаты первых трех точек будут:
Задачу решили:
2
всего попыток:
2
Мальчику подарили развивающую игру-пазл "числовая змейка", состоящую из 40 фигурных элементов, которые можно собирать цепочкой один за другим и только в определенной последовательности. Элементы перенумерованы в соответствии с этой последовательностью числами от 1 до 40. Каждый вечер папе приходится собирать элементы, разбросанные по полу в детской. Он подбирает их по одному случайным образом и сразу ставит на нужное место. При этом они образуют несколько готовых отрезков из нескольких идущих подряд элементов, должным образом соединенных между собой. Понятно, что сначала, до того как папа начинает выкладывать змейку, таких отрезков нет, когда он кладет первый элемент, получается один отрезок, состоящий из единственного элемента, а в конце работы остается также один отрезок, состоящий из всех 40 элементов. По ходу дела количество готовых отрезков может увеличиваться и уменьшаться, достигая в какой-то момент максимума. Вот пример его работы:
Обозначим через M максимальное количество готовых отрезков, которое достигалось в процессе сборки. В таблице ниже приведено количество вариантов сборки, при которых наблюдаются максимальные числа отрезков M для змейки, состоящей из 10 элементов.
Как видно, наиболее вероятное значение M равно 3, и оно реализуется 1815264 различными способами, а 181526 — это первые шесть значащих цифр данного числа.
Задачу решили:
2
всего попыток:
2
Определим f(n) как сумму факториалов цифр числа n. Например, f(342) = 3! + 4! + 2! = 32.
Задачу решили:
2
всего попыток:
3
Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Задачу решили:
2
всего попыток:
5
Как известно, японцы застилают полы прямоугольными матами-татами, укладывая их без зазоров и перекрытий согласно строгим традиционным правилам. Хотя в разных частях Японии размер татами различается, везде его стороны соотносятся как 2:1. Поэтому стороны японской комнаты соотносятся как целые числа a и b, а ее площадь можно выразить как s = a × b.
Задачу решили:
2
всего попыток:
7
Дан треугольник ABC, длины сторон которого выражаются различными целыми числами: |CB|<|AC|<|AB|. Отрезки EF, EG и FG разбивают треугольник ABC на четыре треугольника меньшего размера: AEG, BFE, CGF и EFG.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|