img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 3
всего попыток: 58
Задача опубликована: 26.03.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Легко проверить, что  существует ровно 23 натуральных числа, не превышающих 1000 и имеющих ровно 4 различных простых делителя, не превышающих 100.
Найдите, сколько существует натуральных чисел, не превышающих 1016 и имеющих ровно 4 различных простых делителя, не превышающих 100.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 02.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Корнем многочлена P(x) называют решение уравнения P(x) = 0.
Обозначим через Pn многочлен, коэффициенты которого являются десятичными знаками числа n.
Например, P5703(x) = 5x3 + 7x2 + 3.
Ясно, что
• Pn(0) – это последняя цифра числа n,
• Pn(1) – это сумма цифр числа n,
• Pn(10) – это само число n.
Если n оканчивается на ноль, то Pn имеет корень, равный нулю. Обозначим через Y(k) количество таких натуральных n, не превышающих k, для которых соответствующий многочлен Pn имеет хотя бы один целый корень, отличный от нуля. Например, Y(100 000) = 5545.
Чему равно Y(1016)?

Задачу решили: 3
всего попыток: 6
Задача опубликована: 09.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами:
1. Каждый разрез представляет собой отрезок, соединяющий отмеченные точки.
2. Разрезы не пересекаются, но могут иметь общие концы, соответствующие отмеченным точкам.
3. Мы будем продолжать делать разрезы, пока не останется кусков, которые можно разрезать, не нарушая правил 1 и 2.
Ясно, что по указанным правилам наш лист можно разрезать несколькими способами. Некоторые из этих способов будут симметричны или отличаться друг от друга только поворотом, но мы будем считать такие способы различными. Пусть F(M,N) – это количество способов, которыми можно разрезать прямоугольный лист размером M × N.
Например, F(1,1)=2, F(1,2)=F(2,1)=6, F(2,2)=30.
Случай M=2, N=2 проиллюстрирован рисунком:

eu270.png

Найдите остаток от деления F(25,35) на 108.

Задачу решили: 9
всего попыток: 10
Задача опубликована: 16.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их сумму обозначим как S(n).
Например, при n=91 мы найдем 8 подходящих значений x, а именно: 9, 16, 22, 29, 53, 74, 79, 81. Поэтому S(91)=9+16+22+29+53+74+79+81=363.

Найдите S(123456789987654321).

Задачу решили: 3
всего попыток: 4
Задача опубликована: 23.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа n найдем такие натуральные x из промежутка 1<x<n, чтобы остаток от деления x3 на n был равен 1. Их количество обозначим как C(n).
Например, при n=91 мы найдем 8 подходящих значений x, а именно: 9, 16, 22, 29, 53, 74, 79, 81. Поэтому C(91)=8.

Найдите сумму таких n≤1011, для которых C(n)>100.

Задачу решили: 4
всего попыток: 9
Задача опубликована: 30.04.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим уравнение вида a2 + b2 = N,  где N- некоторое нечетное натуральное число, и будем искать его натуральные решения (a, b), где a четно, и b нечетно.
При N=65 наше уравнение имеет два таких решения:
a=8, b=1 и a=4, b=7.
Обозначим через S(N) сумму значений a для всех решений уравнения a2 + b2 = N. Тогда S(65) = 8 + 4 = 12.

Найдите ∑S(N) для всех бесквадратных натуральных N,  имеющих простые делители только вида 4k+1, где k – натуральное число и 4k+1 < 150.

Примечание: бесквадратным (свободным от квадратов) называется натуральное число, которое не делится ни на один квадрат, кроме 1.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 07.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Попробуем построить признак делимости для делителя p > 1, взаимно простого с 10. Мы хотим найти для каждого натурального n другое число n1, которое делится на p тогда и только тогда, когда n делится на p. Два целых числа называются равноделимыми на p, если либо они оба делятся на p, либо оба не делятся. Если b – последняя цифра числа n, и n=10a+b, мы будем искать n1 в виде:
n1 = a + b ? m.
Остается найти подходящее значение  m < p, которое будем  называть фактором делимости. Тогда для достаточно больших n мы сможем построить убывающую последовательность равноделимых чисел.
Например, для p=113 фактор делимости равен 34.
При n=76275 получим n1 = 7627 + 5 * 34 = 7797, и оба числа 76275 и 7797 делятся на 113.
При n=12345 получим n1 = 1234 + 5 * 34 = 1404, и оба числа 12345 и 1404 не делятся на 113.
Сумма факторов делимости для всех простых p вида 4k+3, не превышающих 1000, равна 19961.
Найдите сумму факторов делимости для всех простых p вида 4k+3, не превышающих 2*107.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 14.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:

  • Статуя порядка n состоит из n единичных квадратов — блоков и еще одного квадрата — постамента (всего — n+1 квадрат).
  • Центр постамента находится в начале координат (x = 0, y = 0).
  • Центры всех блоков имеют положительные координаты y, так что постамент находится ниже остальных квадратов.
  • Центр масс уравновешенной статуи имеет нулевую горизонтальную координату x.

Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй.

eu275.gif

Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда  Z(6)=18, Z(10)=964, Z(15)= 360505.

Найдите ∑Z(n)  для 1 ≤ n ≤ 18.

Задачу решили: 4
всего попыток: 8
Задача опубликована: 21.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим треугольник, длины сторон которого – целые числа a, b и с, удовлетворяющие неравенству a ≤ b ≤ c.
Будем называть такой треугольник примитивным, если наибольший общий делитель длин его сторон равен 1, т.е. gcd(a, gcd(b,c))=1.

Подсчитайте, сколько существует различных примитивных треугольников, периметр которых – семизначное число.

Задачу решили: 9
всего попыток: 12
Задача опубликована: 28.05.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Определим модифицированную последовательность Коллатца как последовательность натуральных чисел, начинающуюся с числа a1, а далее задаваемую рекуррентно по следующим правилам:

  • an+1 = an/3, когда an делится на 3. Обозначим такой переход от  an к an+1 символом "D".
  • an+1 = (4an + 2)/3, если an дает остаток 1 при делении на 3. Обозначим этот случай символом "U".
  • an+1 = (2an - 1)/3 , если an дает остаток 2 при делении на 3.

Обозначим этот случай символом "d".
Последовательность заканчивается первой встретившейся единицей.
Например, при a1 =231 получим последовательность чисел {231,77,51,17,11,7,10,14,9,3,1} и соответствующую строку символов - "DdDddUUdDD".
Для a1 =1004064 получим строку символов DdDddUUdDDDdUDUUUdDdUUDDDUdDD, которая начинается с DdDddUUdDD.

Найдите все a1<1015, у которых цепочка символов, соответствующая модифицированной последовательности Коллатца, начинается с dDUddDDUUUUUdDDUdUdDUdDUddUDUd.
В качестве ответа укажите их сумму.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.