img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 13
Задача опубликована: 07.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Две лестницы длиной x и y опираются на противоположные стены коридора шириной w, как показано на рисунке. Пусть h – высота, на которой лестницы пересекаются. Нас интересуют случаи, когда все четыре числа – x,y,w и h – оказываются целыми.

eu309.gif

Например, для x = 70 и y = 119 можно найти пару подходящих целых чисел h = 30 и w = 56. При 0<x<y<200 есть ровно пять пар (x,y), для которых существуют целые h и w, а именно: (70, 119), (74, 182), (87, 105), (100, 116) и (119, 175).

А сколько существует пар (x,y) при 0<x<y<1 000 000, для которых можно подобрать целые значения w и h?

Задачу решили: 3
всего попыток: 3
Задача опубликована: 14.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом.

Проигрывает тот, кто не может сделать очередной ход.

Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c).

Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными.

Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция.

Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.

Задачу решили: 2
всего попыток: 3
Задача опубликована: 21.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

 

Пусть ABCD – выпуклый четырехугольник с  целыми сторонами, и 1 ≤ AB < BC < CD < AD. Точка O – середина диагонали BD. Будем называть четырехугольник ABCD биклинным, если длины отрезков BO, DO, AO и CO – целые числа, и AO = CO < BO = DO.

Например, когда AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 и AO = CO = 23, четырехугольник ABCD является биклинным.

eu311.png

Обозначим через B(N) количество различных биклинных четырехугольников ABCD с целыми сторонами, у которых |AB|2+|BC|2+|CD|2+|AD|2 ≤ N..

Можно проверить, что B(10 000) = 48 и B(1 000 000) = 38108. 

Найдите B(10 000 000 000).

 

Задачу решили: 3
всего попыток: 11
Задача опубликована: 28.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

 

Рассмотрим построение последовательности графов Серпинского:

  • Граф Серпинского первого порядка S1 представляет собой равносторонний треугольник (три вершины и три соединяющих их ребра).
  • Граф Серпинского  Sn+1 порядка n+1 представляет собой объединение трех графов Sn, имеющих попарно общую вершину, как показано на рисунке:

 eu312-1.gif

Пусть C(n) — количество циклов, проходящих через каждую вершину  Sn ровно один раз. Например, C(3)=8, поскольку граф  S3 позволяет построить ровно 8 подобных циклов, как показано на рисунке: 

eu312-2.gif

Легко проверить, что 

C(1) = C(2) = 1

C(5) = 71328803586048

C(10 000) mod 108 = 37652224

C(10 000) mod 710 = 221100305

(Здесь a mod b означает остаток от деления a на b.)

Найдите C(C(C(10 000))) mod 710.

 

Задачу решили: 4
всего попыток: 4
Задача опубликована: 04.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим игру на прямоугольной клетчатой доске. Одна клетка доски не занята, на остальных стоят фишки. Каждым ходом игрок передвигает на свободную клетку одну из соседних (по вертикали или горизонтали) фишек. В начале игры пустая клетка находится в правом нижнем углу, в левом верхнем углу находится красная фишка, а на остальных клетках стоят синие фишки. Цель игры — переместить красную фишку в правый нижний угол за наименьшее количество ходов. На рисунке ниже показана последовательность ходов для доски 2 х 2.

eu313-1.gif

Пусть S(m,n) -минимальное количество ходов, необходимое для перемещения красной фишки в правый нижний угол для доски m х n. Можно проверить, что S(5,4) = 25.

eu313-2.gif

Существует всего 256 различных досок с сторонами m и n, не превышающими 100, для которых S(m,n) является квадратом натурального числа.

Подсчитайте количество досок со сторонами m и n, не превышающими 1010, для которых S(m,n) является квадратом натурального числа.

Задачу решили: 3
всего попыток: 7
Задача опубликована: 11.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Когда стали раздавать бесплатные участки на Луне, были установлены следующие правила. Каждому государству выделяется квадратная площадка размером 500 х 500 м. Площадка расчерчена на клетки размером 1 х 1 м, в углах которых установлено 251001 столбов. Забор должен состоять из прямолинейных отрезков, соединяющих столбы. 

Однако нужно учитывать, что строительство заборов в лунных условиях недешево.

Конечно, богатые государства построили себе ограды длиной 2000 м, которые ограничивали площадь 250 000 м2. Но финансы княжества Фенвик расстроены, и правительство поручило вам, Главному Программисту, найти оптимальную форму забора, обеспечивающую максимальное отношение площади огороженного участка к длине забора.

Прежде, чем писать программу, вы сделали предварительные расчеты. 

Для квадратного забора длиной 2000 м площадь участка получается равной 250 000 м2, а отношение площади к длине ограды  равно 125.

Если бы разрешалось строить криволинейные заборы, то для круглого участка диаметром 500 м площадь будет равна π*2502 м2, длина ограды - π*500 м, и отношение будет равно тому же числу 125.

Если же отрезать от четырех углов площадки четыре равнобедренных прямоугольных треугольника с катетами 75 м, как показано на рисунке зеленым цветом, можно достичь существенного выигрыша. Действительно, площадь участка станет равной 238750 м2, длина забора будет равна 1400+300√2 м, а интересующее нас отношение составит примерно 130,87. При этом будет использовано 1700 столбов.

eu314.gif 

Найдите форму участка, обеспечивающую максимум отношения площади огороженного участка к длине ограды. В качестве ответа укажите количество использованных столбов.

Задачу решили: 14
всего попыток: 29
Задача опубликована: 18.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Shamil

 eu315.gif

Сэм и Макс решили сделать из электронных часов прибор для демонстрации последовательности математических вычислений. Для испытания они запрограммировали его на расчет однозначной суммы цифр натуральных чисел. Напомним, что для вычисления однозначной суммы цифр суммируют все десятичные цифры числа, затем все десятичные цифры результата, и так далее, пока не получится однозначное число.

Когда в прибор передают очередное число, оно отображается индикатором, затем отображаются все промежуточные значения, и, наконец, - результат.

Например, если взять число 137, индикатор покажет последовательность "137"→"11"→"2", а затем погаснет до прихода нового числа.

Каждая цифра на индикаторе состоит из нескольких отрезков, как показано на рисунке.

Например, цифра "8" использует семь отрезков – четыре вертикальных и три горизонтальных, цифра "1" состоит из двух вертикальных, а именно, правого верхнего и правого нижнего, а цифра "4" – из четырех отрезков: левого верхнего, правого верхнего и правого нижнего вертикальных и горизонтального, лежащего посередине.

Индикатор потребляет электроэнергию, только когда отрезки включаются или выключаются. Так, включение или выключение числа 2 требует пяти единиц энергии, а числа 7 – четырех единиц энергии.

Сэм и Макс предложили разные конструкции прибора.

Работа прибора Сэма показана на картинке слева. Когда  этот прибор получает число 137, оно отображается на индикаторе, затем полностью гаснет, затем прибор показывает число 11, которое также гаснет, и, наконец, загорается число 2, которое тоже гаснет

В таблице приведен расчет энергопотребления прибора Сэма для числа 137.

"137":(2 + 5 + 4) ?× 2 = 22 переключений ("137" включается и выключается).

"11":(2 + 2) × 2 = 8 переключений ("11" включается и выключается).

"2":(5) × 2 = 10 переключений ("2" включается и выключается).

Всего получается 40 переключений и, соответственно, тратится 40 единиц энергии.

Прибор Макса (изображен справа) работает по-другому. Он не выключает каждый раз весь индикатор, а выбирает только те отрезки, которые не понадобятся для следующего числа.

Вот, как он будет работать с числом 137:

"137":2 + 5 + 4 = 11 переключений (включение трех цифр числа "137"), 7 переключений (выключение отрезков, не нужных для числа "11"). 0 переключений (число "11" уже и так горит)

"11":3 переключения (выключение первой единички и нижней части второй единички; верхняя часть остается гореть, поскольку она нужна для цифры "2").

"2":4 переключения (включение оставшихся отрезков цифры "2"), 5 переключений (выключение цифры "2").

Итого: 30 переключений.

Понятно, что прибор Макса тратит меньше энергии. Так, при подсчете однозначной суммы цифр для числа 137 экономия составляет 10 единиц энергии.

Найдите общую экономию энергии при подсчете однозначной суммы цифр для всех простых чисел, не превышающих  2×107.

Задачу решили: 6
всего попыток: 18
Задача опубликована: 25.02.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: механикаimg
Лучшее решение: Sam777e

Космонавт пытается посадить космоплан на плоскую горизонтальную поверхность планеты X. Однако космический пират, высадившийся ранее и вооруженный пулеметом, пытается помешать ему. Начальная скорость пули составляет 740 м/с. При этом считается, что пуля опасна для космоплана, когда ее скорость превышает 100 м/с.

Космонавт знает, что на планете X нет атмосферы, а ускорение свободного падения равно 9,81 м/с2. 

Найдите объем той области пространства, где пулемет представляет опасность для космоплана.

Результат выразите в кубометрах и округлите вниз до целого.

Задачу решили: 6
всего попыток: 14
Задача опубликована: 04.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени:

(√2+√3)2 = 9.898979485566356...

(√2+√3)4 = 97.98979485566356...

(√2+√3)6 = 969.998969071069263...

(√2+√3)8 = 9601.99989585502907...

(√2+√3)10 = 95049.999989479221...

(√2+√3)12 = 940897.9999989371855...

(√2+√3)14 = 9313929.99999989263...

(√2+√3)16 = 92198401.99999998915...

Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1.

В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n.

Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013.

Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.

Задачу решили: 3
всего попыток: 4
Задача опубликована: 11.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:

  • x1 = 2
  • для всех 1 <  i ≤  n : xi-1 <  xi
  • для всех i и j из интервала 1 ≤ i, j ≤  n выполняется неравенство (xi)j <  (xj + 1)i

Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}.

Пусть t(n) — количество таких последовательностей длины n.

Тогда t(10) = 86195 и t(20) = 5227991891.

Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.