img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 2
всего попыток: 5
Задача опубликована: 09.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg

Пусть  a, b, c – натуральные числа, а функция F(n) определена следующим образом:
F(n) = n - c при n > b
F(n) = F(a + F(a + F(a + F(a + n)))) при n ≤ b. 
Пусть также 
Z(a,b,c)=\sum_{n=a}^{b}F(n)
Тогда, например, при a = 50, b = 2000 и c = 40, получим F(0) = 3240, F(2000) = 2040,
а Z(50, 2000, 40) = 5044935.
Найдите остаток от деления Z(217, 721, 127) на 987654321.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 16.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Последовательность Голомба {G(n)}  определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n)  вхождений каждого натурального числа n.
Вот несколько первых значений G(n):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
1 2 2 3 3 4 4 4 5 5 5 6 6 6 6 ...

Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30.

Найдите ΣG(2n)для 1 ≤ n < 60.

Задачу решили: 6
всего попыток: 8
Задача опубликована: 23.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100

Рассмотрим нечетное число 225 = 32 × 52.
2252 = 50625 = 34 × 54 = 92 × 252. Поэтому функция Эйлера φ(50625) = 2 × 33 × 4 × 53 = 23 × 33 × 53 .
Итак, число  50625 является квадратом, а φ(50625) является кубом.
Найдите сумму нечетных n, 1 < n < 1010 , для которых функция Эйлера φ(n2) является кубом натурального числа.

Задачу решили: 5
всего попыток: 6
Задача опубликована: 30.09.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Возьмем натуральное число k, и будем выписывать последовательность рациональных чисел ai = xi/yi следующим образом:
a1 = 1/k
ai = (xi-1+1)/(yi-1-1) при i>1.
При этом все дроби xi/yi будем приводить к несократимому виду.
Мы будем продолжать последовательность до тех пор, пока нам не встретится целое число n.
Определим функцию  f(k)  как f(k) = n.
Например, при k = 20:

1/20 → 2/19 → 3/18 = 1/6 → 2/5 → 3/4 → 4/3 → 5/2 → 6/1 = 6

Поэтому f(20) = 6.

Можно проверить, что f(2) = 2, f(3) = 1 и Σf(k3) = 18764 для простых k, не превышающих 100.

Найдите Σf(k3) для простых k, не превышающих 5×106.

Задачу решили: 1
всего попыток: 1
Задача опубликована: 07.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Полем игры из этой задачи является полоска из n клеток, а фишками — монеты.
Одна из этих монет — серебряный доллар — ценная, а остальные — медные — ценности не представляют. Игроки могут совершать ходы двух типов:
1. Сдвинуть любую монету влево на одну или несколько клеток. При этом поставить монету можно только на свободную клетку, и перескакивать через занятые клетки нельзя.
2. Забрать с доски монету, ближайшую к левому краю.
Если ходов первого типа нет, игрок обязан забрать самую левую монету.
Выигрывает тот, кто заберет серебряный доллар.

eu344.gif

Выигрышной называется позиция, при которой очередной игрок, правильно выбирая ходы, может обеспечить себе победу независимо от действий второго игрока. Остальные позиции называются проигрышными.
Пусть L(n,c) – количество проигрышных позиций для поля из n клеток, на которое расставляют c медных монет и один серебряный доллар.
Можно проверить, что L(10,3)=150 и L(103,13)= 32792060838490304.
Найдите остаток от деления L(1000003,103) на 1000003.

Задачу решили: 10
всего попыток: 22
Задача опубликована: 14.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Возьмем матрицу n×n, выберем из нее n элементов так, чтобы никакие два из них не стояли в одной строке или столбце, и найдем их сумму. Минимальное значение такой суммы будем называть матричной суммой для данной матрицы.
Например, для матрицы:

  7  53 183 439 863
497 383 563  79 973
287  63 343 169 583
627 343 773 959 943
767 473 103 699 303

матричной суммой будет число 1075=7+79+343+343+303.

Найдите матричную сумму для матрицы:

  7  53 183 439 863 497 383 563  79 973 287  63 343 169 583
627 343 773 959 943 767 473 103 699 303 957 703 583 639 913
447 283 463  29  23 487 463 993 119 883 327 493 423 159 743
217 623   3 399 853 407 103 983  89 463 290 516 212 462 350
960 376 682 962 300 780 486 502 912 800 250 346 172 812 350
870 456 192 162 593 473 915  45 989 873 823 965 425 329 803
973 965 905 919 133 673 665 235 509 613 673 815 165 992 326
322 148 972 962 286 255 941 541 265 323 925 281 601  95 973
445 721  11 525 473  65 511 164 138 672  18 428 154 448 848
414 456 310 312 798 104 566 520 302 248 694 976 430 392 198
184 829 373 181 631 101 969 613 840 740 778 458 284 760 390
821 461 843 513  17 901 711 993 293 157 274  94 192 156 574
 34 124   4 878 450 476 712 914 838 669 875 299 823 329 699
815 559 813 459 522 788 168 586 966 232 308 833 251 631 107
813 883 451 509 615  77 281 613 459 205 380 274 302  35 805

Задачу решили: 8
всего попыток: 16
Задача опубликована: 21.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Запишем число 57 в системах счисления по основанию 4 и 28:

5710=3214=2128

В обоих случаях 

  • последней цифрой оказалась единица, 
  • цифры в записи числа убывают, 
  • каждая последующая цифра меньше предыдущей на единицу. 

При выполнении этих условий будем говорить, что число имеет специальный вид в данной системе счисления.

Так, число 57 имеет специальный вид в системах счисления с основаниями 4 и 28.

Существует пять натуральных чисел 1<n<500, имеющих специальный вид хотя бы в двух системах счисления, а именно 57, 121, 209, 321 и 457. Их сумма равна 1165.

Найдите сумму n (1<n<1012), имеющих специальный вид хотя бы в двух системах счисления.

Задачу решили: 8
всего попыток: 9
Задача опубликована: 28.10.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

В этой задаче мы будем рассматривать натуральные числа, имеющие ровно три простых делителя. Например, число 240 имеет простые делители 2,3 и 5. Это наибольшее число, не превышающее 250, имеющее эти три простых делителя и не имеющее других.

Для различных простых чисел p, q и r обозначим через M(p,q,r,N) наибольшее натуральное число, не превышающее N, которое делится на p, q и r, но не имеет других простых делителей. Если таких чисел нет, будем считать, что M(p,q,r,N)=0.

Например:

  • M(2,3,5,250)=240.
  • M(2,3,7,250)=168, а не 210, поскольку число 210 имеет 4 простых делителя.
  • M(3,7,13,250)=0, поскольку нет натуральных чисел, не превышающих 250, которые делятся на 3, 7 и 13.

Пусть S(N) – сумма различных значений M(p,q,r,N) для всех сочетаний p, q и r. Так, S(250)= 4588.

Найдите  S(10 000 000).

Задачу решили: 20
всего попыток: 24
Задача опубликована: 04.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Многие числа могут быть представлены в виде суммы куба и квадрата, а некоторые из них даже несколькими способами.
Рассмотрим число 37873.
Во-первых, оно может быть записано в виде суммы куба и квадрата тремя способами:

37873 = 183+1792 = 223+1652 = 333+442

Во-вторых, оно является палиндромом, то есть его десятичная запись читается слева направо и справа налево одинаково.

Найдите сумму палиндромов, не превышающих миллиарда, которые можно представить в виде суммы куба и квадрата не менее чем тремя способами.

Задачу решили: 6
всего попыток: 10
Задача опубликована: 11.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

По бесконечной клетчатой доске, клетки которой окрашены в черный или в белый цвет, ползает муравей. Он может двигаться в одном из четырех направлений: вверх, вниз, влево и вправо, с каждым шагом перемещаясь в соседнюю по стороне клетку. При этом муравей соблюдает следующие правила движения:

  • Если он находится на черной клетке, он перекрашивает клетку в белый цвет, изменяет направление своего движения на 90 градусов против часовой стрелки и переходит в соседнюю клетку.
  • Если он находится на белой клетке, он перекрашивает клетку в черный цвет, изменяет направление своего движения на 90 градусов по часовой стрелке и переходит в соседнюю клетку.

Пусть в начальный момент все клетки доски белые, а муравей находится в точке с координатами x=0 и y=0. Клетки доски ориентированы вдоль координатных осей и имеют единичный размер.
Найдите |x|+|y| после 1018 шагов.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.