Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
67
всего попыток:
122
Число 17 может быть представлено как сумма идущих подряд простых чисел: 2 + 3 + 5 + 7 = 17. Найдите самый длинный ряд последовательных простых чисел таких, что их сумма - тоже простое число меньшее 3000000. В ответе запишите произведение количества простых чисел в найденном ряде и их суммы.
Задачу решили:
33
всего попыток:
65
Рассмотрим пятизначную конструкцию 56**3. Заменив звездочки одинаковыми цифрами, мы получим серию из 10 чисел 56003, 56113, ..., 56993. Семь из этих чисел простые (56003, 56113, 56333, 56443, 56663, 56773, 56993). Теперь рассмотрим все различные семизначные конструкции, состоящие из цифр и звездочек. Замена звездочек одинаковыми цифрами в каждой конструкции порождает серию из 10 чисел, например, конструкция **1*23* порождает серию: 0010230, 1111231, 2212232, 3313233, 4414234, ..., 9919239. Выберем только те конструкции, в которых после замены звездочек в полученной серии из 10 чисел имеется не менее 8-ми семизначных простых чисел. Теперь выбросим в отобранных конструкциях звездочки и полученные числа сложим. Чему равна сумма?
Задачу решили:
84
всего попыток:
95
Оказывается есть такие числа, что при умножении их на некоторое число получается число, состоящее из цифр исходного числа. Например, 125874 * 2 = 251748. Найдите все семизначные числа, которые при умножении на каждое из чисел 2, 3, 4, 5 и 6 дают результаты, состоящие из цифр исходного числа. В ответе напишите сумму всех таких чисел.
Задачу решили:
77
всего попыток:
149
Рассмотрим натуральное десятизначное число. Такое число назовем самоописывающимся, если выполнены следующие условия: первая цифра равна числу единиц в записи числа, вторая цифра равна числу двоек в записи числа, и.т.д. Девятая цифра равна числу девяток в записи числа. Таких чисел существует всего десять. Чему равна сумма их квадратов?
Задачу решили:
37
всего попыток:
81
Можно доказать, что не существует прямоугольных треугольников, у которых длины всех трех сторон были бы простыми числами. Однако, существуют прямоугольные треугольники, у которых длины всех сторон являются натуральными числами и, кроме того, длины двух из трех сторон являются простыми числами. Примером такого треугольника является треугольник со сторонами 3, 4, 5. Если рассматривать прямоугольные треугольники, длины сторон которых не превосходят 100, то таких треугольников три штуки. Сколько существует таких треугольников с длинами сторон не более 109?
Задачу решили:
50
всего попыток:
61
Рассмотрим простые числа, десятичная запись которых заканчивается на 999999. Первым таким числом, в порядке возрастания, является число 2999999. 999-ым числом является 8878999999. Чему равно 999999-ое простое число, заканчивающееся на 999999?
Задачу решили:
44
всего попыток:
72
Вася выписал на доске 40 двенадцатизначных чисел: 481800152899 193230655180 986236359087 428136213172 710185136208 257800775580 457966873591 246543012813 913042823095 126270615520 672758768176 237417461304 950806502006 203802076583 971336790809 264424278847 700120799542 468438387190 126905462669 974298103010 460780999474 994004798784 485435715233 947292385889 617524011122 978177944085 193757695910 703261961996 422149528834 926723363717 164253370437 780535370289 777225705905 691505201210 649311709535 877877642314 762301340783 580839294219 157869922914 126125893782 После чего пришел Петя и стёр некоторые из них. Сумма оставшихся чисел оказалась равна 12052171999118. А чему равна сумма квадратов оставшихся чисел?
Задачу решили:
51
всего попыток:
92
Рассмотрим все комбинаторные сочетания вида Ckn= n!/(k!*(n-k)!), где 1 ≤ k ≤ n ≤ 2009. Найдите количество пар (n,k) таких, что 106 < Ckn ≤ 107.
Задачу решили:
6
всего попыток:
315
Назовём натуральное число универсальным, если вычёркиванием части его цифр можно получить любое девятизначное число, все цифры которого различны и не равны нулю. Найти наименьшее универсальное число.
Задачу решили:
39
всего попыток:
60
Если сложить число 47 с записанным в обратном порядке числом 74: 47 + 74 = 121, в результате получается палиндром 121 (читается одинаково слева направо и справа налево). Оказывается, что не все числа так быстро превращаются в палиндромы: 349 + 943 = 1292, 1292 + 2921 = 4213, 4213 + 3124 = 7337. То есть число 349 становится палиндромом после 3 таких операций. Существуют такие числа, которые не станут палиндромом ни при каком количестве таких операций, например, таким числом является 196. Такие числа называются числами Лихрела. Существуют палиндромы, которые сами являются числами Лихрела, например, 4994. Рассмотрите такую же операцию в двоичной системе счисления. Например, число 2210 = 101102, не образует палиндрома в пределах 1000 итераций: 101102 + 011012 = 1000112, 1000112 + 1100012 = 10101002, ... Найти все двоичные числа меньшие 210, которые за 40 итераций не становятся палиндромами. Чему равна сумма всех найденных чисел в десятичной системе счисления?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|