Лента событий:
Vkorsukov решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
9
Найдите количество непустых подмножеств множества {1250250, 2250249, 3250248,... , 2502492, 2502501}, у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.
Задачу решили:
3
всего попыток:
6
Лист бумаги представляет собой прямоугольник размером M × N, где M и N – натуральные числа. Отметим на его сторонах точки с целочисленными координатами, а затем будем разрезать этот лист, руководствуясь следующими правилами: Найдите остаток от деления F(25,35) на 108.
Задачу решили:
5
всего попыток:
7
Определим уравновешенную статую как полимино, удовлетворяющее следующим требованиям:
Подсчитаем количество различных уравновешенных статуй порядка n. При этом статуи, симметричные друг другу относительно вертикальной оси, будем считать одинаковыми. На рисунке показаны уравновешенные статуи порядка 6. Объединив симметричные, получим 18 различных уравновешенных статуй. Пусть Z(n) – количество уравновешенных статуй порядка n. Тогда Z(6)=18, Z(10)=964, Z(15)= 360505. Найдите ∑Z(n) для 1 ≤ n ≤ 18.
Задачу решили:
0
всего попыток:
3
Трудолюбивый муравей случайно блуждает по клетчатой доске 5х5, расположенной вертикально. Он начинает свое движение в центре доски, а его траектория состоит из вертикальных и горизонтальных отрезков, соединяющих центры соседних клеток. Направление каждого следующего отрезка он выбирает случайным образом и с равной вероятностью из 2, 3 или 4 возможных вариантов, в зависимости от своего положения. В начальный момент в каждой из пяти клеток нижнего ряда расположено по одному зерну. Если муравей свободен от ноши, и он оказывается в клетке нижнего ряда, содержащей зернышко, то он его забирает. Если муравей с зерном оказывается в свободной клетке верхнего ряда, то он оставляет зерно в этой клетке. Работа муравья считается завершенной, когда все зерна перенесены из нижнего ряда в верхний (понятно, что в каждой клетке верхнего ряда окажется по одному зерну). Какова средняя ожидаемая продолжительность работы муравья, если его путь на одну клетку вниз занимает 1 секунду, на одну клетку вверх – 3 секунды, а на одну клетку вправо или влево по горизонтали – 2 секунды? Ответ дайте в микросекундах, округлив вниз до целого.
Задачу решили:
5
всего попыток:
10
Мы хотим приготовить пиццу круглой формы, состоящую из m?n ломтей-секторов одного размера, но с разной начинкой. У нас есть m≥2 сортов начинки, и каждый сорт мы должны использовать ровно для n ломтей. Обозначим через f(m,n) количество способов приготовления пиццы, в которой будет ровно n ломтей, заправленных начинкой каждого из m сортов. Поскольку пиццу можно крутить как угодно вокруг вертикальной оси, но нельзя переворачивать начинкой вниз, зеркально симметричные варианты считаются различными, а варианты, отличающиеся только поворотом, предполагаются одинаковыми. Например, f(2,1)=1, f(2,2)=f(3,1)=2 и f(3,2)=16. Случай f(3,2) показан на рисунке:
Найдите сумму всех f(k,k), не превышающих 1015.
Задачу решили:
3
всего попыток:
12
Рассмотрим метод кодирования черно-белых изображений при помощи квадрадеревьев для квадратного изображения размером 2N×2N однобитовых пикселей. Сгенерируем кодирующую последовательность из нулей и единиц по следующим правилам:
В качестве примера рассмотрим изображение размером 4×4, где цветными крестиками обозначены точки ветвления.
В принципе, изображение может быть закодировано несколькими различными битовыми последовательностями, например, "001010101001011111011010101010" или "0100101111101110". Первая из этих последовательностей содержит 30 битов, а вторая – только 16, и эта длина является минимальной. Рассмотрим теперь изображения размером 2N×2N, построенные следующим образом:
Для изображения данного типа с N=24 найдите кодирующую последовательность минимальной длины. Сколько единиц она содержит?
Задачу решили:
6
всего попыток:
7
В сильно упрощенной модели белки можно рассматривать как цепочки гидрофобных (H) и полярных (P) элементов, например HHPPHHHPHHPH. В этой задаче мы будем считать, что ориентация белка существенна, то есть белки HPP и PPH мы будем считать различными, а количество белков из n элементов будет равно 2n. Гидрофобные элементы притягиваются друг к другу, и белок принимает наиболее энергетически выгодную конфигурацию так, чтобы максимизировать количество связей H-H. Поэтому элементы H часто находятся внутри белка, а элементов P больше снаружи. Конечно, настоящие белки имеют трехмерные конфигурации, но мы еще несколько упростим модель, ограничившись двумя измерениями и предполагая, что звенья цепочки занимают места в клетках квадратной решетки. На рисунке показаны две конфигурации одного белка (связи H-H отмечены красными точками)
В конфигурации слева сформировалось всего лишь 6 связей H-H, поэтому такая конфигурация энергетически невыгодна и не может встретиться в природе. Правая конфигурация имеет девять связей H-H, и это максимальное значение для такой цепочки. Будем называть оптимальными те конфигурации, которые обеспечивают максимальное количество связей H-H для данной цепочки. 77 из 256 восьмиэлементных цепочек в оптимальной конфигурации имеют более 4 связей H-H. Сколько цепочек, состоящих из 15 элементов, в оптимальной конфигурации будут иметь более 9 связей H-H?
Задачу решили:
6
всего попыток:
8
Рассмотрим игру для двух участников. Игровое поле представляет собой полоску из n клеток белого цвета. Ходы совершают по очереди. Каждым ходом игрок должен закрасить любые две соседние белые клетки. Проигрывает тот, кто не может сделать ход.
Таким образом, первые три значения n, при которых первый игрок выигрывает – это 2,3 и 4, а первые два проигрышных значения – это 1 и 5. Третье проигрышное значение n=9, десятое: n=43. Найдите миллионное значение n, при котором второй игрок всегда может победить.
Задачу решили:
4
всего попыток:
4
Рассмотрим игру на прямоугольной клетчатой доске. Одна клетка доски не занята, на остальных стоят фишки. Каждым ходом игрок передвигает на свободную клетку одну из соседних (по вертикали или горизонтали) фишек. В начале игры пустая клетка находится в правом нижнем углу, в левом верхнем углу находится красная фишка, а на остальных клетках стоят синие фишки. Цель игры — переместить красную фишку в правый нижний угол за наименьшее количество ходов. На рисунке ниже показана последовательность ходов для доски 2 х 2. Пусть S(m,n) -минимальное количество ходов, необходимое для перемещения красной фишки в правый нижний угол для доски m х n. Можно проверить, что S(5,4) = 25. Существует всего 256 различных досок с сторонами m и n, не превышающими 100, для которых S(m,n) является квадратом натурального числа. Подсчитайте количество досок со сторонами m и n, не превышающими 1010, для которых S(m,n) является квадратом натурального числа.
Задачу решили:
14
всего попыток:
29
Сэм и Макс решили сделать из электронных часов прибор для демонстрации последовательности математических вычислений. Для испытания они запрограммировали его на расчет однозначной суммы цифр натуральных чисел. Напомним, что для вычисления однозначной суммы цифр суммируют все десятичные цифры числа, затем все десятичные цифры результата, и так далее, пока не получится однозначное число. Когда в прибор передают очередное число, оно отображается индикатором, затем отображаются все промежуточные значения, и, наконец, - результат. Например, если взять число 137, индикатор покажет последовательность "137"→"11"→"2", а затем погаснет до прихода нового числа. Каждая цифра на индикаторе состоит из нескольких отрезков, как показано на рисунке. Например, цифра "8" использует семь отрезков – четыре вертикальных и три горизонтальных, цифра "1" состоит из двух вертикальных, а именно, правого верхнего и правого нижнего, а цифра "4" – из четырех отрезков: левого верхнего, правого верхнего и правого нижнего вертикальных и горизонтального, лежащего посередине. Индикатор потребляет электроэнергию, только когда отрезки включаются или выключаются. Так, включение или выключение числа 2 требует пяти единиц энергии, а числа 7 – четырех единиц энергии. Сэм и Макс предложили разные конструкции прибора. Работа прибора Сэма показана на картинке слева. Когда этот прибор получает число 137, оно отображается на индикаторе, затем полностью гаснет, затем прибор показывает число 11, которое также гаснет, и, наконец, загорается число 2, которое тоже гаснет В таблице приведен расчет энергопотребления прибора Сэма для числа 137. "137":(2 + 5 + 4) ?× 2 = 22 переключений ("137" включается и выключается). "11":(2 + 2) × 2 = 8 переключений ("11" включается и выключается). "2":(5) × 2 = 10 переключений ("2" включается и выключается). Всего получается 40 переключений и, соответственно, тратится 40 единиц энергии. Прибор Макса (изображен справа) работает по-другому. Он не выключает каждый раз весь индикатор, а выбирает только те отрезки, которые не понадобятся для следующего числа. Вот, как он будет работать с числом 137: "137":2 + 5 + 4 = 11 переключений (включение трех цифр числа "137"), 7 переключений (выключение отрезков, не нужных для числа "11"). 0 переключений (число "11" уже и так горит) "11":3 переключения (выключение первой единички и нижней части второй единички; верхняя часть остается гореть, поскольку она нужна для цифры "2"). "2":4 переключения (включение оставшихся отрезков цифры "2"), 5 переключений (выключение цифры "2"). Итого: 30 переключений. Понятно, что прибор Макса тратит меньше энергии. Так, при подсчете однозначной суммы цифр для числа 137 экономия составляет 10 единиц энергии. Найдите общую экономию энергии при подсчете однозначной суммы цифр для всех простых чисел, не превышающих 2×107.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|