img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 1
всего попыток: 4
Задача опубликована: 20.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 3 img
баллы: 100
Темы: алгоритмыimg

Широко известна игра, где один из участников задумывает целое число, а другой пытается его угадать, задавая вопросы. В этой задаче исследуется вариант такой игры, когда задумывают натуральное число из промежутка [1,n], а в качестве вопросов разрешается называть натуральные числа из этого же интервала. При этом стоимость каждого вопроса равна названному числу. Допускаются ответы трех видов:

  1. Ты назвал число меньше задуманного.
  2. Ты угадал!
  3. Ты назвал число больше задуманного.

Требуется определить  задуманное число и при этом минимизировать суммарную стоимость вопросов (в дальнейшем – цена игры). Для данного числа n назовем стратегию оптимальной, если она минимизирует цену игры для самого неудачного задуманного числа.

Например, при n=3 наилучшим первым ходом будет число "2". После этого при любом ответе можно будет точно определить задуманное число, поэтому больше вопросов не потребуется, и цена игры будет равна 2.

Если n=8, мы могли бы выбрать в качестве стратегии "бинарный поиск". Если первым ходом мы назовем число "4", а задуманное число будет больше, чем 4, нам потребуется еще два вопроса. Пусть вторым ходом мы называем число "6". Если задуманное число больше, чем 6, нам потребуется еще один ход, скажем, "7", и цена игры составит 4+6+7=17.

Мы можем существенно улучшить нашу стратегию для n=8, если первым ходом назовем число "5". Если задуманное число больше, чем 5, то вторым ходом мы можем назвать число "7", и этого будет достаточно для нахождения задуманного. Тогда цена игры составит 5+7=12. Если же задуманное число меньше, чем 5, то для его определения достаточно  вторым и третьим ходом назвать "3" и "1", а цена игры составит 5+3+1=9. Поскольку 12 > 9, в худшем случае цена игры при этой стратегии будет равна 12. Получается, что данная стратегия более выгодна, чем предыдущая, и оказывается, что она оптимальна, то есть никакая другая стратегия не может гарантировать для n=8 результат меньший, чем 12.

Пусть C(n) – максимальная цена игры, которая может получиться для оптимальной стратегии в худшем случае. 

Тогда C(1) = 0, C(2) = 1, C(3) = 2 и C(8) = 12.

Можно подсчитать, что  C(100) = 400.

Найдите С(500000).

 
Задачу решили: 0
всего попыток: 0
Задача опубликована: 10.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой.

Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих  на одной с ней вертикали, и N-1 шашек, стоящих  на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.

eu331.gif  

Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода.

Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1.

Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере.

Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0).

Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253.

Найдите сумму T(k!) для 1≤k≤12.

 
Задачу решили: 9
всего попыток: 14
Задача опубликована: 15.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Вагоны поезда обозначены буквами латинского алфавита: A,B,C,D..., и последовательность вагонов в железнодорожном составе можно задать с помощью соответствующей цепочки букв.

В правильно сформированном составе вагоны должны следовать алфавитном порядке. Добиваются этого на сортировочной станции, где установлен большой поворотный круг.

Когда состав въезжает на круг, несколько последних вагонов отцепляют, после чего локомотив с остальными вагонами съезжает с круга. Вагоны, стоящие на круге, поворачивают на 180 градусов и вновь прицепляют в хвост состава, но уже в обратном порядке. Эту операцию повторяют несколько раз, пока не достигают желаемого результата.

В некоторых случаях сформировать состав совсем просто. Например, когда исходный порядок вагонов ADCB, вагоны можно расцепить между A и D, затем развернуть фрагмент DCB, и, наконец, сцепить вагоны в нужном порядке. Результат достигается всего за один шаг, т.е. за один поворот круга на 180 градусов.

Возможно, процесс можно оптимизировать, но машинист пользуется совсем простым алгоритмом. Сначала он стремиться прицепить вагон A следом за паровозом, затем следом за ним вагон B, и так далее.

Машинист выяснил, что для состава из четырех вагонов потребуется не более 5 шагов. Максимальное количество - 5 операций - требуется для двух начальных последовательностей, а именно DACB и DBAC. Последовательности вагонов, требующие наибольшего количества операций для упорядочения, будем называть пессимальными.

Порядок формирования состава для начальной последовательности  DACB показан на рисунке.

eu336.png  

Для состава из шести вагонов машинист составил список пессимальных последовательностей. Список содержал 24 последовательности. Последовательности он расположил в алфавитном порядке, и цепочка DFAECB оказалась на десятом месте от начала.

Представьте, что вам поручили составить список пессимальных последовательностей для составов из 11 вагонов и упорядочить получившийся список в алфавитном порядке.

На каком месте в списке окажется последовательность CIAKBGHFJDE?

Задачу решили: 6
всего попыток: 10
Задача опубликована: 11.11.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg

По бесконечной клетчатой доске, клетки которой окрашены в черный или в белый цвет, ползает муравей. Он может двигаться в одном из четырех направлений: вверх, вниз, влево и вправо, с каждым шагом перемещаясь в соседнюю по стороне клетку. При этом муравей соблюдает следующие правила движения:

  • Если он находится на черной клетке, он перекрашивает клетку в белый цвет, изменяет направление своего движения на 90 градусов против часовой стрелки и переходит в соседнюю клетку.
  • Если он находится на белой клетке, он перекрашивает клетку в черный цвет, изменяет направление своего движения на 90 градусов по часовой стрелке и переходит в соседнюю клетку.

Пусть в начальный момент все клетки доски белые, а муравей находится в точке с координатами x=0 и y=0. Клетки доски ориентированы вдоль координатных осей и имеют единичный размер.
Найдите |x|+|y| после 1018 шагов.

Задачу решили: 9
всего попыток: 18
Задача опубликована: 02.12.13 08:00
Прислал: Rep img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: mikev

Степени двойки, как известно, редко начинаются с цифры 9 (см. задачу 316). Так, первый раз это случается только для 53-й степени (253 = 9007199254740992). С двух девяток подряд начинается 93-я степень, а с трех девяток - только 2621-я.

Найдите минимальный показатель степени n такой, что десятичная запись числа 2n начинается с десяти девяток подряд.

Задачу решили: 5
всего попыток: 13
Задача опубликована: 27.01.14 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

В отеле "Инфинити" бесконечно много этажей, на каждом этаже бесконечно много комнат, а к администратору выстроилась бесконечно длинная очередь. И этажи, и комнаты на каждом этаже, и посетители перенумерованы подряд натуральными числами (1, 2, 3, …).
В начальный момент все комнаты отеля свободны. Чтобы поселить очередного гостя с номером n,  администратор выбирает самый нижний этаж, на котором либо пока никто не живет, либо последний поселившийся имеет такой номер m, что m+n является квадратом целого числа. Новый гость получает первый свободный номер на выбранном этаже.
 Гость №1 получает комнату №1 на первом этаже, поскольку на нем еще никто не живет.
 Гостя №2 нельзя поселить в комнате №2 на первом этаже, поскольку сумма 1+2=3 не является квадратом. Этого гостя можно поселить на втором, пока еще пустом этаже, в комнате №1.
 Гость №3 получает комнату №2 на первом этаже, поскольку сумма 1+3=4 является квадратом.
Таким образом, каждый гость получит свою комнату в отеле.
Обозначим через P(f, r) номер посетителя, живущего в комнате r на этаже f.
Тогда:
P(1, 1) = 1
P(1, 2) = 3
P(2, 1) = 2
P(10, 20) = 440
P(25, 75) = 4863
P(99, 100) = 19454
Найдите сумму P(f, r) для всех f и r, таких что f2 + r2 = 14234886498625 .

Задачу решили: 1
всего попыток: 12
Задача опубликована: 03.02.14 08:00
Прислал: TALMON img
Источник: Задача 84 раздела "Математика".
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. Число N - наименьшее число кусков, на которое ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями.

Сколько существует различных разбиений пирога на таких N кусков?

Замечания.

1. Нужно считать только разбиения на куски, кратные 1/(7*8*9) части пирога.

2. Если из какого-то разбиения можно скомпоновать нужные части несколькими способами, то это разбиение всё равно считается только один раз.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.03.21 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2141 раздела МАТЕМАТИКА
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Сколькими различными способами можно разрезать шестиугольник из 54-х одинаковых равносторонних треугольников по линиям сетки на три конгруэнтных n–угольника?

Шестиугольник и 54 треугольника

Разрезания, являющиеся симметрическими отображениями друг друга, считать только один раз. Т.е., нужно найти количество «неконгруэнтных разрезаний».

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.