Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
60
Объясним правила карточной игры в покер (для разновидности "Техасский Холдем"). Достоинства карт обозначаются так: а масти:
Возможны следующие комбинации карт в порядке убывания старшинства.
Роял-флаш: старшие (туз, король, дама, валет, десять) пять карт одной масти, например: Т♥ К♥ Д♥ В♥ 10♥. Стрейт-флаш: любые пять карт одной масти по порядку, например: 9♠ 8♠ 7♠ 6♠ 5♠.
При совпадении комбинаций более сильной является комбинация со старшими картами, например 8♣ 8♠ 4♥ 4♣ 2♠ старше, чем 7♣ 7♠ 5♥ 5♣ K♠. Комбинация 6♠ 5♦ 4♥ 3♠ 2♦ старше, чем 5♦ 4♥ 3♠ 2♦ Т♦.
Вначале каждому игроку раздаются по две карты, а затем во время игры на стол выкладываются еще 5 общих карт. Победителем считается тот игрок, карты которого образуют с общими картами наиболее сильную комбинация из 5 карт. Например, если карты первого игрока Т♣ В♣ и второго - Т♥ В♥, а общие карты - В♣ К♣ К♥ К♦ К♠. Тогда старшая кобминация первого - Т♣ К♣ К♥ К♦ К♠, второго - Т♥ К♣ К♥ К♦ К♠, в данном случае ничья. При раздаче карт первый игрок получл Т♥ Т♣, а второй игрок - K♦ K♠. Какова вероятность выигрыша первого игрока?
Задачу решили:
69
всего попыток:
84
Число "гугол" (googol) 10100 - довольно большое, но сумма его цифр равна 1. Найдите максимальную сумму цифр чисел mn, 0<m<28, 0<n<28.
Задачу решили:
30
всего попыток:
45
Известно, что √3 = 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + ... То есть может быть представлен как цепная дробь с периодом (1, 2). Посчитаем частичные суммы такой цепной дроби: 1 + 1/(1 + 1/2) = 5/3 1 + 1/(1 + 1/(2 + 1/(1 + 1/2))) = 19/11 1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/2))))) = 71/41 Следующие частичные суммы дают такие дроби: 265/153, 989/571, 3691/2131, 13775/7953,... Для последней из записанных дробей - числитель имеет больше цифр чем знаменатель. Среди первых 2009 таких частичных сумм найдите дроби у которых цифр в числителе больше чем в знаменателе. В ответе укажите количество таких дробей.
Задачу решили:
42
всего попыток:
72
Рассмотрим спираль из натуральных чисел: 37 36 35 34 33 32 31 Спираль формируется так: в центре 1, а затем числа последовательно дописываются по спирали против часовой стрелки. Нас интересуют только числа находящиеся на одной горизонтали или вертикали с единицей. Для спирали с длиной стороны 7 доля простых среди них 4/13. Рассмотрите спирали с нечетными длинами сторон. Найдите спираль минимального размера, но большую чем дана в примере, для которой доля простых среди чисел меньше 1/10. В ответе запишите длину стороны такой спирали.
Задачу решили:
23
всего попыток:
154
Математик R сказал математикам P и S: "Я задумал два различных натуральных числа меньших 123. Математику P я сейчас сообщу - по секрету от S - произведение этих чисел, а математику S я сообщу - по секрету от P - их сумму". Он выполнил обещанное и предложил отгадать задуманные числа. Между P и S произошёл следующий диалог: S: "Я не могу сказать, чему равны задуманные числа." P: "Я не могу сказать, чему равны задуманные числа." S: "Я не могу сказать, чему равны задуманные числа." P: "Я не могу сказать, чему равны задуманные числа." S: "Я не могу сказать, чему равны задуманные числа." P: "Я не могу сказать, чему равны задуманные числа." S: "А ведь тогда я их знаю!" Какие числа задумал математик R? Введите оба числа: сначала меньшее, потом большее. Например, если ответом на задачу являются числа 34 и 12, то введите 1234.
Задачу решили:
108
всего попыток:
144
Найдите сумму всех натуральных чисел N<109, которые делятся на 11 и N/11 равно сумме квадратов цифр N.
Задачу решили:
86
всего попыток:
120
Найдите сумму первых 6 натуральных чисел, у которых последняя цифра – 6, и каждое из них увеличивается в 4 раза от перестановки последней цифры в начало.
Задачу решили:
63
всего попыток:
150
Найти наибольшее значение, которое может принять произведение нескольких натуральных чисел, сумма которых равна 2009.
Задачу решили:
78
всего попыток:
99
Найдите сумму всех натуральных чисел n таких, что (2n + 1)/n² является натуральным числом.
Задачу решили:
55
всего попыток:
70
Натуральные числа (a,b) такие, что число ab(a + b) не делится на 7, а число (a + b)7 – a7 – b7 делится на 77. Чему равно минимальное произведение a*b таких чисел?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|