Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
12
Заполним полоску из пяти клеток, используя черные квадраты и цветные прямоугольники: красные прямоугольники из двух клеток, зеленые прямоугольники из трех клеток, синие – из четырех и желтые из пяти клеток. Как видно из рисунка, это можно сделать шестнадцатью способами.
Сколько есть способов заполнения полоски из 50 клеток?
Задачу решили:
15
всего попыток:
19
Радикалом числа n, rad(n), называют произведение различных простых делителей числа n. Например 1008 = 24×32×7, следовательно rad(1008) = 2×3×7 = 42. Если мы вычислим все rad(n) для 1 ≤ n ≤10, отсортируем их по значению rad(n), а затем по значению n (при равных rad(n)), то получим:
Обозначим через E(k) k-ый элемент в отсортированной колонке n, например, E(4) = 8 и E(6) = 9. Если rad(n) отсортирован для 1 ≤ n ≤ 100000, найдите сумму всех E(k) для 1 ≤ k ≤ 50000.
Задачу решили:
7
всего попыток:
10
Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111.
Задачу решили:
11
всего попыток:
14
Рассмотрим последовательные простые числа p1 = 37 и p2 = 41. Можно убедиться, что число S = 3441, является наименьшим числом, обладающим следующими свойствами: 1) S кратно p1, и 2) последние цифры S образуют число p2. Для любых последовательных простых чисел p2 >p1> 5, можно найти наименьшее натуральное S, обладающее свойствами 1 и 2. Найдите ∑S для всех пар последовательных простых чисел при 7 ≤ p1 ≤ 1000000.
Задачу решили:
8
всего попыток:
11
Обозначим через reverse(n) число, состоящее из тех же цифр, что и натуральное число n, но записанных в обратном порядке. Для некоторых n в десятичной записи суммы n + reverse(n) используются только нечетные цифры. Такие n назовем обратимыми. Например, числа 36, 63, 409 и 904 обратимы, поскольку 36 + 63 = 99 и 409 + 904 = 1313. Помня, что десятичная запись чисел не может начинаться с нуля, можно подсчитать, что ровно 120 обратимых чисел не превышают тысячи. А сколько обратимых чисел не превышает 1021?
Задачу решили:
10
всего попыток:
14
Легко видеть, что числа в первых пяти строках треугольника Паскаля не делятся на 5:
Однако, рассмотрев первые сто строк, мы найдем, что 2800 чисел из 5050 кратны пяти.
Задачу решили:
4
всего попыток:
4
В числовом треугольнике, составленном из целых чисел, мы хотим найти такой числовой треугольник меньшего размера, чтобы сумма составляющих его чисел была максимальна.
s1 Искомый треугольник может начинаться с любого числа и продолжаться сколь угодно далеко вниз, включая в себя два примыкающих элемента из следующей строки, три элемента из строки следующей за нею, и т.д. Определим сумму треугольника как сумму всех входящих в него элементов.
Задачу решили:
6
всего попыток:
6
Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
С другой стороны, 1+i не является делителем 5, поскольку . Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Для делителей с положительной вещественной частью . Для 1 ≤ n ≤ 105, Σ s(n)=17924657155. Найдите Σ s(n) для 1 ≤ n≤ 15·107.
Задачу решили:
4
всего попыток:
4
На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое. Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров. Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар. Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех). То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n. Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.
Задачу решили:
2
всего попыток:
4
Для двух натуральных чисел a и b определим последовательность Улама следующим образом:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|