Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
5
всего попыток:
16
Посмотрим на десятичную запись первых неотрицательных целых чисел:
Задачу решили:
8
всего попыток:
19
Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:
А сколько решений будет иметь это уравнение при n=16?
Задачу решили:
8
всего попыток:
9
Выберем три различные буквы из русского алфавита (содержащего, как известно, 33 буквы). Из них сформируем строку длиной 3 знака, например, 'абв', 'пар' или 'юэь'.
Задачу решили:
10
всего попыток:
14
Составное число может быть разложено на множители разными способами. Например, (если не учитывать умножение на 1) число 24 может быть разложено на множители семью различными способами: Теперь для каждого разложения числа 24 найдем сумму цифровых корней сомножителей:
Максимальная сумма цифровых корней для всех разложений числа 24 равна 11. Обозначим максимальную сумму цифровых корней для всех разложений числа n через mdrs(n). Найдите наименьшее n, для которого mdrs(n)>60.
Задачу решили:
11
всего попыток:
17
Для натурального N вычислим N!, отбросим все нули справа, возьмем число, образованное четырьмя последними цифрами, и обозначим его через f(n). Например: 9! = 362880 и f(9)=6288 10! = 3628800 и f(10)=6288 20! = 2432902008176640000 и f(20)=7664 Найдите f(1014).
Задачу решили:
6
всего попыток:
7
Фигуру, составленную из трех квадратов, имеющих общую сторону, называют тримино. Тримино бывают двух видов: угловое и прямое:
С учетом различных ориентаций можно насчитать шесть видов тримино: Легко доказать, что при помощи тримино можно покрыть любой прямоугольник m x n, если m x n кратно трем. Например, полоску 2 х 9 можно покрыть 41 способом: При этом симметричные покрытия мы считали различными. Сколько существует подобного рода покрытий для прямоугольника 8 х 15?
Задачу решили:
7
всего попыток:
15
В шестнадцатеричной системе счисления числа представляют с помощью 16 цифр: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F Шестнадцатеричная запись AF соответствует десятичному числу 10x16+15=175. Ответ представьте в шестнадцатеричной системе счисления.
((A,B,C,D,E и F в верхнем регистре, без каких-либо дополнительных символов и нолей слева, например, 1A3F - правильный формат, а 1a3f, 0x1a3f, $1A3F, #1A3F и 0000001A3F - неправильно))
Задачу решили:
7
всего попыток:
9
Рассмотрим равносторонний треугольник с проведенными в нем медианами, такой как треугольник размера 1 на рисунке:
Задачу решили:
7
всего попыток:
22
Сколько существует таких 20-значных чисел, что в их десятичной записи сумма любых трех последовательных цифр не меньше шести, но не превышает одиннадцати?
Задачу решили:
5
всего попыток:
25
Два отрезка могут не иметь общих точек, могут иметь одну общую точку или бесконечно много общих точек. Будем говорить, что два отрезка имеют истинную точку пересечения, если они имеют единственную общую точку, и эта точка не является концом ни одного из указанных отрезков. Положение отрезка на плоскости однозначно определяется координатами его концов. Рассмотрим три отрезка:
Легко проверить, что отрезки L2 и L3 имеют истинную точку пересечения. Один из концов отрезка L3, а именно точка (22, 40), лежит на отрезке L1, и поэтому точка пересечения L1 и L3 не считается истинной. Отрезки L1 и L2 не имеют общих точек. Таким образом, для трех выбранных отрезков мы найдем только одну истинную точку пересечения. s0 = 290797 Чтобы построить отрезок, мы будем брать четыре последовательных числа. Например, координаты концов первого отрезка будут следующими:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|