Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
14
У каждого из четырех прямоугольных треугольников со сторонами (9,12,15), (12,16,20), (5,12,13) и (12,35,37) длина одного из катетов равна 12. Можно доказать, что других прямоугольных треугольников с целыми сторонами и катетом длиной 12 нет. Таким образом, различных прямоугольных треугольников с целыми сторонами и катетом длиной 12 существует ровно четыре.
Задачу решили:
2
всего попыток:
4
Рассмотрим невыпуклый четырехугольник ABCD с диагоналями AC и BD. В каждой вершине входящая в нее диагональ образует два угла со сторонами четырехугольника. Например, в вершине A это будут углы BAC и CAD. Измерим величину этих восьми углов в градусах. Для некоторых четырехугольников полученные восемь чисел окажутся целыми. Будем называть такие четырехугольники невыпуклыми целыми четырехугольниками. Пример невыпуклого целого четырехугольника легко получить, если расположить точки A, B и C в вершинах правильного треугольника, а точку D в его центре. Другой пример получим, задав CAB=85°, BAD=55°, ABD=15°, CBD=50°, ACB=30°, BCD=25°, ADB=110°, BDC=105°.
(В расчетах можно считать угол целым, если его величина совпадает с целым числом с точностью до 10-9 градуса.)
Задачу решили:
11
всего попыток:
32
Рассмотрим три семейства функций: f1,n(x,y,z) = xn+1 + yn+1 – zn+1 f2,n(x,y,z) = (x y + y z + z x)*(xn-1 + yn-1 – zn-1) f3,n (x,y,z) = – x y z * (xn-2 + yn-2 – zn-2) и их сумму: fn (x,y,z) = f1,n (x,y,z) + f2,n (x,y,z) + f3,n (x,y,z) Будем называть (x,y,z) золотой тройкой порядка k, если x, y и z – положительные рациональные числа, представимые в виде правильных дробей со знаменателем, не превышающим k, и существует такое целое n, что fn (x,y,z) = 0 Обозначим через s(x,y,z) = x + y + z. Найдите сумму всех различных значений s для золотых троек порядка 50. Результат округлите до ближайшего целого.
Задачу решили:
11
всего попыток:
20
Рассмотрим число 44456656. Заметим, что соседние десятичные цифры в его десятичной записи отличаются не более чем на единицу. Будем называть такие натуральные числа ступенчатыми.
Задачу решили:
9
всего попыток:
13
Четыре предмета, один из которых белый (Б), а три остальных – черные (Ч), можно сгруппировать семью способами: (ЧЧЧБ) (Ч,ЧЧБ) (Ч,Ч,ЧБ) (Ч,Ч,Ч,Б) (Ч,ЧЧ,Б) (ЧЧЧ,Б) (ЧЧ,ЧБ) Обозначим через f(b,w) количество способов, которыми можно сгруппировать множество из b черных и w белых предметов. Так, f(3,1)=7. Найдите ∑f(60,p), где сумма берется для всех простых p, не превышающих 50.
Задачу решили:
12
всего попыток:
14
Возьмем натуральное число N и разделим его на k равных частей r=N/k. Тогда N = r + r + ... + r. Обозначим через P произведение этих частей: P = r × r × ... × r = rk. Например, если разделить 11 на пять равных частей (11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2), P окажется равным 2.25 = 51.53632. Обозначим через Pmax(N) максимальное значение P, которое можно получить для данного значения N. Оказывается, что для N=11 максимум достигается при k=4: Pmax= (11/4)4= 14641/256 = 57.19140625. Это число является конечной десятичной дробью. Однако для N=8 максимум достигается при разбиении на три части: Pmax= 512/27, и это число не может быть представлено в виде конечной десятичной дроби. Определим функцию D(N) как число десятичных знаков после запятой в Pmax(N) для случая, когда Pmax(N) представимо конечной десятичной дробью. В случае, когда Pmax(N) не может быть представлено в виде конечной десятичной дроби, будем считать, что D(N)=0. Например, D(11)=8, D(8)=0. Для 5 ≤ N ≤ 100 ΣD(N)=1027. Найдите ΣD(N) для 5 ≤ N ≤ 10000.
Задачу решили:
5
всего попыток:
6
Пусть Ir – множество точек с целыми координатами x и y, лежащих внутри круга радиуса r, т.е. x2 + y2 < r2. При r=2 I2 содержит 9 точек (0,0), (1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1) и (1,-1). Рассмотрим треугольники, вершинами которых являются точки, принадлежащие I2. Среди них найдется ровно 8 треугольников, содержащих начало координат в своей внутренней области. Два из них показаны на рисунке, а остальные можно получить поворотами.
При r=3 существует ровно 360 треугольников с вершинами, принадлежащими I3, содержащих начало координат в своей внутренней области, а для r=5 таких треугольников будет 10600. Сколько найдется треугольников, все вершины которых принадлежат I500, а начало координат лежит в их внутренней области?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|