img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 10
всего попыток: 20
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Сообщение в системе шифрования RSA представляет собой некоторое число m. Если необходимо зашифровать текст, сначала его каким-то известным образом превращают в число, а затем происходит собственно шифрование.

Шифрование осуществляется следующим образом:

  • Выбирают два различных простых числа p и q.
  • Вычисляют n=pq и φ=(p-1)(q-1). Число n должно быть достаточно велико, чтобы сообщения m попадали в интервал [0,n-1].
  • Выбирают целое число e, 1<e<φ, не имеющее общих делителей с φ (gcd(e,φ)=1).
  • Из числа m получают зашифрованное сообщение c=me mod n (здесь a mod b означает остаток от деления a на b).

Чтобы расшифровать текст, действуют следующим образом:

  • Находят число d такое, что ed=1 mod φ
  • Для зашифрованного сообщения c, вычисляют m=cd mod n.

Однако иногда попадаются такие неудачные сочетания e и m, что me mod n=m. Будем называть такие сообщения нескрытыми. Необходимо выбирать e таким образом, чтобы нескрытых сообщений было меньше. Например, пусть p=19 и q=37.
Тогда n=19*37=703, и φ=18*36=648.
Если мы выберем e=181, абсолютно все сообщения m (0≤m≤n-1) окажутся нескрытыми, хотя условие gcd(181,648)=1 выполняется. Такой выбор крайне неудачен.
К сожалению, для любого e, выбранного согласно указанным правилам, всегда найдется сколько-то нескрытых сообщений.
Возьмем p=1009 и q=3643. Найдите количество таких e, 1<e<φ(1009,3643) gcd(e,φ)=1, для которых количество нескрытих сообщений минимально.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.