Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
54
Палиндромами называют числа, десятичные знаки которых расположены симметрично. Палиндром 595 интересен тем, что его можно представить в виде суммы семи последовательных квадратов натуральных чисел: 62 + 72 + 82 + 92 + 102 + 112 + 122. Существует ровно 5 палиндромов, не превышающих 1000, которые можно представить в виде суммы 5 и более последовательных квадратов. Их сумма равна 2609. Найдите сумму всех палиндромов, не превышающих 108, которые можно представить в виде суммы 5 и более последовательных квадратов.
(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили:
12
всего попыток:
12
Для некоторых простых чисел p можно найти такое натуральное n, для которого выражение n3+ n2p является точным кубом.
Задачу решили:
7
всего попыток:
14
Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111. Рассмотрим теперь репьюниты вида R(10n). Хотя R(10), R(100) и R(1000) не делятся на 17, R(10000) делится на 17 без остатка. Но оказывается, что нет таких n, для которых R(10n) делилось бы на 19. Из всех простых чисел, меньших ста только четыре, а именно 11, 17, 41 и 73, могут быть делителями R(10n) для некоторого n. Найдите сумму всех простых чисел, меньших 200000, которые являются делителями R(10n) для какого-либо n.
Задачу решили:
11
всего попыток:
23
Для натуральных чисел x, y, z их суммы и разности x + y, x - y, x + z, x - z, y + z и y - z являются квадратами натуральных чисел. Найдите минимальное значение x + y.
Задачу решили:
16
всего попыток:
25
Найти сумму таких натуральных чисел n, для которых n2+1, n2+3, n2+7, n2+9, n2+13 и n2+21 являются последовательными простыми числами, и n < 150 000 000.
Задачу решили:
9
всего попыток:
19
Посмотрите на таблицу. Легко проверить, что максимальная сумма чисел, стоящих подряд вдоль одного из диагональных направлений, равна 16 (= 8 + 7 + 1).
Давайте теперь рассмотрим ту же задачу для таблицы большего размера. Для этого будем использовать генератор случайных чисел Фибоначчи с запаздываниями:
Задачу решили:
6
всего попыток:
7
Попробуем записать число 1/3 в виде суммы обратных квадратов различных натуральных чисел. Например, используя числа {2, 5, 6, 10, 15, 30}: Используя числа до 45 включительно, это можно сделать четырьмя способами. Вот соответствующие наборы чисел:
Задачу решили:
6
всего попыток:
22
Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.
Задачу решили:
5
всего попыток:
16
Посмотрим на десятичную запись первых неотрицательных целых чисел:
Задачу решили:
8
всего попыток:
19
Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:
А сколько решений будет иметь это уравнение при n=16?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|