img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 13
Задача опубликована: 28.09.09 09:12
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим четырехзначные простые числа с повторяющимися цифрами. Ясно, что все цифры не могут быть одинаковы: 1111 делится на 11, 2222 делится на 22, и т.д. Но есть девять четырехзначных простых чисел, содержащих три единицы:
1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111
Обозначим через M(n, d) максимально возможное количество повторяющихся цифр в n-значном простом числе, где d - повторяющаяся цифра. Пусть N(n, d) - количество таких чисел, а S(n, d) - их сумма.
Тогда M(4, 1) = 3 - максимальное количество единиц в четырехзначном простом числе, всего существует N(4, 1) = 9 таких чисел, а их сумма равна S(4, 1) = 22275. Оказывается, что при d = 0 в четырехзначном простом числе может быть не более M(4, 0) = 2 нулей, и N(4, 0) = 13.
Таким образом, мы получим следующие результаты для четырехзначных простых чисел:

Digit, d M(4, d) N(4, d) S(4, d)
0 2 13 67061
1 3 9 22275
2 3 1 2221
3 3 12 46214
4 3 2 8888
5 3 1 5557
6 3 1 6661
7 3 9 57863
8 3 1 8887
9 3 7 48073

Найдите сумму всех S(n, d) для 3 ≤ n ≤ 10 и 0 ≤ d ≤ 9.

Задачу решили: 17
всего попыток: 46
Задача опубликована: 07.10.09 16:33
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Будем называть возрастающим натуральное число, десятичные цифры которого не убывают слева направо, например 134468.
Аналогично, убывающим числом будем называть такое натуральное число, цифры которого не возрастают слева направо, например 864431.
Оказывается, что возрастающие числа встречаются реже, чем убывающие. Так, среди первых ста натуральных чисел имеется 54 возрастающих и 64 убывающих (18 чисел, состоящих из одинаковых цифр, являются сразу же и возрастающими, и убывающими), а в первой тысяче натуральных чисел - 219 возрастающих и 283 убывающих.
Обозначим через R(n) отношение количества убывающих чисел к количеству возрастающих среди первых n натуральных чисел. Например, оказывается, что R(11)=11/10, R(1127)=11/9.
Найти R(n), где n – число, состоящее из 111 единиц (Оказывается, это целое число).

(Можно решить при помощи карандаша и бумаги)
Задачу решили: 12
всего попыток: 14
Задача опубликована: 12.10.09 12:40
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На рисунке изображена прямоугольная полоска из восьми выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее трех клеток, а черные – не менее двух. Как видно из рисунка, полоску из восьми клеток можно раскрасить таким образом четырнадцатью способами.

 


Сколькими способами можно раскрасить полоску из 50 клеток, следуя тем же правилам?

Задачу решили: 10
всего попыток: 12
Задача опубликована: 19.10.09 15:11
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

 

Замечание: Это более сложный вариант задачи 114.

Как и в задаче 114, будем рассматривать прямоугольные полоски, состоящие из n выстроенных в ряд клеток. Идущие подряд клетки одного цвета образуют блоки. При этом красные блоки содержат не менее mr клеток, а черные – не менее mb.

 

Обозначим через F(mr, mb,n) число способов, которым такая полоска может быть построена, например F(3, 2, 8)=14 (см. рисунок).

 

 

Кроме того, F(3, 2, 34)= 856506 и F(3, 2, 35)= 1309554.

Это означает, что n=35 – минимальное значение, при котором функция F(3, 2,n) превосходит миллион.

Аналогично, F(5, 3, 46) = 849735 и F(5, 3, 47)= 1172897, и 47 – первое значение n, при котором F(5, 3, n) больше миллиона.

Найдите минимальное значение n, при котором F(111, 100, n) > 1 000 000.

 

Задачу решили: 6
всего попыток: 22
Задача опубликована: 19.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Электрическая цепь состоит из одинаковых конденсаторов емкостью C. Конденсаторы можно соединять последовательно или параллельно в блоки, которые также можно соединять последовательно или параллельно в "суперблоки" большего размера, и так далее.


Используя эту процедуру и не более n одинаковых конденсаторов, мы можем собрать некоторое количество цепей различной суммарной емкости. Например, используя не более 3 конденсаторов с электрической емкостью 60μF каждый, мы можем получить 7 различных значений общей емкости цепи:


(Известно, что, соединяя конденсаторы C1, C2 … параллельно, мы получим общую емкость CT=C1+C2+..., а соединяя последовательно – общую емкость )
Если мы обозначим через D(n) количество различных значений емкости электрических цепей, которые можно собрать, используя не более n одинаковых конденсаторов, то получим D(1)=1, D(2)=3, D(3)=7,...
Найдите D(19).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.