img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 18
всего попыток: 19
Задача опубликована: 07.12.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Обозначим через pn n-ое простое число, а через rn- остаток от деления (pn-1)n + (pn+1)n на pn2.
Например, при n = 3, p3 = 5, и 43 + 63 = 280 5 mod 25.
Наименьшее значение n, при котором остаток rn превышает 109 равно 7037.
Найдите наименьшее значение n, для которого rn >1011.

Задачу решили: 15
всего попыток: 19
Задача опубликована: 14.12.09 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Радикалом числа n, rad(n), называют произведение различных простых делителей числа n. Например 1008 = 24×32×7, следовательно rad(1008) = 2×3×7 = 42.

Если мы вычислим все rad(n) для 1 ≤ n ≤10, отсортируем их по значению rad(n), а затем по значению n (при равных rad(n)), то получим:

До сортировки
 
После сортировки

n

rad(n)


n

rad(n)

k
1
1
 
1
1
1
2
2
 
2
2
2
3
3
 
4
2
3
4
2
 
8
2
4
5
5
 
3
3
5
6
6
 
9
3
6
7
7
 
5
5
7
8
2
 
6
6
8
9
3
 
7
7
9
10
10
 
10
10
10

Обозначим через E(k) k-ый элемент в отсортированной колонке n, например, E(4) = 8 и E(6) = 9.

Если rad(n) отсортирован для 1 ≤ n ≤ 100000, найдите сумму всех E(k) для 1 ≤ k ≤ 50000.

Задачу решили: 28
всего попыток: 54
Задача опубликована: 24.12.09 00:19
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Палиндромами называют числа, десятичные знаки которых расположены симметрично. Палиндром 595 интересен тем, что его можно представить в виде суммы семи последовательных квадратов натуральных чисел: 62 + 72 + 82 + 92 + 102 + 112 + 122.

Существует ровно 5 палиндромов, не превышающих 1000, которые можно представить в виде суммы 5 и более последовательных квадратов. Их сумма равна 2609.

Найдите сумму всех палиндромов, не превышающих 108, которые можно представить в виде суммы 5 и более последовательных квадратов.

(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили: 7
всего попыток: 10
Задача опубликована: 25.01.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111.
Пусть n-натуральное число, взаимно простое с 10. Можно доказать, что всегда существует число k, для которого R(k) кратно n. Обозначим через A(n) минимальное такое число, например, A(7) = 6 и A(41) = 5.
Для любого простого p > 5 число p−1 кратно A(p). Например, при p = 41 A(41) = 5 и 41-1 делится на 5.
Однако изредка попадаются и составные числа, обладающие этим свойством. Первые пять из них: 91, 259, 451, 481 и 703.
Найдите n - пятидесятое взаимно простое с 10 составное число, для которого n−1 делится на A(n).

Задачу решили: 12
всего попыток: 12
Задача опубликована: 01.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для некоторых простых чисел p можно найти такое натуральное n, для которого выражение n3+ n2p является точным кубом.
Например, если p=19, то 83+ 82×19=123.
Оказывается, для каждого простого p можно найти не более одного подходящего значения n, и есть только четыре подходящих простых числа, не превышающих сотни.
Найдите сумму всех простых чисел, обладающих указанным свойством и не превышающих одного миллиона.

Задачу решили: 10
всего попыток: 16
Задача опубликована: 08.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k.
Например, R(10) = 1111111111 = 11×41×271×9091, а сумма этих простых сомножителей равна 9414.
Найдите сумму первых двухсот простых сомножителей числа R(12!).

Задачу решили: 7
всего попыток: 14
Задача опубликована: 15.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Числа, состоящие только из единиц называют репьюнитами. Обозначим через R(k) репьюнит длиной k, например, R(6) = 111111.

Рассмотрим теперь репьюниты вида R(10n). Хотя R(10), R(100) и R(1000) не делятся на 17, R(10000) делится на 17 без остатка. Но оказывается, что нет таких n, для которых R(10n) делилось бы на 19. Из всех простых чисел, меньших ста только четыре, а именно 11, 17, 41 и 73, могут быть делителями R(10n) для некоторого n.

Найдите сумму всех простых чисел, меньших 200000, которые являются делителями R(10n) для какого-либо n.

Задачу решили: 11
всего попыток: 14
Задача опубликована: 22.02.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Рассмотрим последовательные простые числа p1 = 37 и p2 = 41. Можно убедиться, что число S = 3441, является наименьшим числом, обладающим следующими свойствами:

1) S кратно p1, и

2) последние цифры S образуют число p2.

Для любых последовательных простых чисел p2 >p1> 5, можно найти наименьшее натуральное S, обладающее свойствами 1 и 2.

Найдите ∑S для всех пар последовательных простых чисел при 7 ≤ p1 ≤ 1000000.

Задачу решили: 11
всего попыток: 23
Задача опубликована: 19.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натуральных чисел x, y, z их суммы и разности x + y, x - y, x + z, x - z, y + z и y - z являются квадратами натуральных чисел. Найдите минимальное значение x + y.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 26.04.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Пусть ABC – треугольник, внутренние углы которого меньше 120 градусов, и пусть X – некоторая точка внутри треугольника, XA = p, XB = q и XC = r.
Ферма предложил Торричелли найти такое положение X, для которого сумма p + q + r обращается в минимум.
Торричелли удалось доказать, что если на сторонах треугольника ABC построить равносторонние треугольники AOB, BNC и AMC и описать вокруг них окружности, эти окружности пересекутся в общей точке T, лежащей внутри треугольника. Кроме того, он доказал, что точка T (называемая ныне точкой Торричелли-Ферма) минимизирует сумму p + q + r.


Оказывается, что когда сумма p + q + r обращается в минимум, AN = BM = CO = p + q + r, а отрезки AN, BM и CO также пересекаются в точке T.

Если для некоторого треугольника все числа a, b, c, p, q и r оказываются целыми, мы будем называть его треугольником Торричелли. Примером такого треугольника может служить треугольник со сторонами a = 399, b = 455 и c = 511.

Найдите сумму всех различных периметров треугольников Торричелли, не превышающих 300000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.