img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 10
всего попыток: 14
Задача опубликована: 31.05.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: mogikanin (Максим Мирошников)

Легко видеть, что числа в первых пяти строках треугольника Паскаля не делятся на 5:

         1        
      1
  1
     
    1
   2   1
   
   1   3
   3   1
 
 1    4    6    4   1

Однако, рассмотрев первые сто строк, мы найдем, что 2800 чисел из 5050 кратны пяти.
Сколько чисел в первом миллиарде строк будут кратны пяти?

 

Задачу решили: 9
всего попыток: 19
Задача опубликована: 07.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Посмотрите на таблицу. Легко проверить, что максимальная сумма чисел, стоящих подряд вдоль одного из диагональных направлений, равна 16 (= 8 + 7 + 1).

-2 5 3 2
9 -6 5 1
3 2 7 3
-1 8 -4 8

Давайте теперь рассмотрим ту же задачу для таблицы большего размера. Для этого будем использовать генератор случайных чисел Фибоначчи с запаздываниями:
Для 1≤k≤55, sk = [100003 - 200003·k + 300007·k3)] (mod 1000000) - 500000.
Для 56≤k≤4000000, sk = [sk-24 +sk-55 + 1000000] (mod 1000000) - 500000.
(Здесь x(mod y) означает остаток от деления x на y).
Например, s10 = -393027 и s100 = 86613.

Заполним при помощи первых четырех миллионов чисел этого генератора таблицу 2000×2000. Заполнять таблицу будем последовательно, строка за строкой.
Найдите максимальную сумму чисел, стоящих подряд вдоль какого-либо из диагональных направлений в получившейся таблице.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 14.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

В числовом треугольнике, составленном из целых чисел, мы хотим найти такой числовой треугольник меньшего размера, чтобы сумма составляющих его чисел была максимальна.
В примере на рисунке красным цветом выделен такой максимальный треугольник. Сумма составляющих его чисел равна 42.


 
Теперь мы хотим решить эту задачу для треугольника побольше. Наш треугольник будет состоять из 1000 строк. Чтобы его заполнить, сгенерируем 500500 псевдослучайных чисел sk в диапазоне от -219 до 219, используя следующий линейно-конгруэнтный генератор псевдослучайных чисел:
t := 0
для k от 1 до 500500:
    t := (615949*t + 797807) (mod 220)
    sk := t-219

Тогда получим: s1 = 273519, s2 = -153582, s3 = 450905,  а исходный треугольник будет выглядеть следующим образом

 s1
ss
3
sss
6
ssss
10
...

Искомый треугольник может начинаться с любого числа и продолжаться сколь угодно далеко вниз, включая в себя два примыкающих элемента из следующей строки, три элемента из строки следующей за нею, и т.д. Определим сумму треугольника как сумму всех входящих в него элементов.
Найдите наибольшую сумму треугольника, для всех треугольников, которые можно построить указанным способом.

Задачу решили: 6
всего попыток: 7
Задача опубликована: 28.06.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Попробуем записать число 1/3 в виде суммы обратных квадратов различных натуральных чисел. Например, используя числа {2, 5, 6, 10, 15, 30}:

Используя числа до 45 включительно, это можно сделать четырьмя способами. Вот соответствующие наборы чисел:
{2, 5, 6, 10, 15, 30}
{2, 5, 7, 10, 14, 15, 21, 30}
{2, 4, 12, 14, 15, 20, 28, 42}
{2, 6, 7, 9, 10, 12, 20, 28, 35, 36, 45}
Сколькими способами можно записать 1/3 в виде суммы обратных квадратов различных натуральных чисел, не превышающих 80?

Задачу решили: 6
всего попыток: 6
Задача опубликована: 05.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Всем известно, что уравнение x2=-1 не имеет решений для вещественных x.
Однако, перейдя в область комплексных чисел, мы найдем два корня: x=i и x=-i.
Уравнение (x-3)2=-4 имеет два решения: x=3+2i и x=3-2i. Их называют комплексно-сопряженными.
Гауссовыми целыми называют комплексные числа a+bi, у которых a и b целые. Обычные целые числа тоже, конечно, являются гауссовыми целыми с b=0. Чтобы отличить их от гауссовых целых с b≠0, мы будем называть их "рациональными целыми". Гауссово целое будем называть делителем рационального целого n, если частное также является гауссовым целым.
Например, если мы делим 5 на 1+2i, получим


Поскольку 1-2i – гауссово целое, число 1+2i является делителем 5.

С другой стороны, 1+i не является делителем 5, поскольку .

Заметим, что если гауссово целое (a+bi) является делителем рационального целого n, то и комплексно-сопряженное (a-bi) также будет делителем n.
Таким образом, число 5 имеет ровно 6 делителей с положительной вещественной частью: {1, 1 + 2i, 1-2i, 2 + i, 2-i, 5}.
В таблице приведены все делители с положительной вещественной частью первых пяти положительных рациональных целых.

n Гауссовы делители с положительной
вещественной частью
Сумма этих делителей
s(n)
1 1 1
2 1, 1+i, 1-i, 2 5
3 1, 3 4
4 1, 1+i, 1-i, 2, 2+2i, 2-2i,4 13
5 1, 1+2i, 1-2i, 2+i, 2-i, 5 12

Для делителей с положительной вещественной частью .
Для 1 ≤ n ≤ 105, Σ s(n)=17924657155.
Найдите Σ s(n) для 1 ≤ n≤ 15·107.

Задачу решили: 4
всего попыток: 4
Задача опубликована: 12.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

На рисунке изображена треугольная пирамида, составленная из шариков. Каждый шарик стоит на трех других шариках, расположенных в нижележащем слое.

Давайте теперь подсчитаем количество путей, ведущих из вершины к каждому из шаров.

Наш путь начинается с самого верхнего шара. На каждом шаге мы переходим к одному из трех шаров, на которых стоит текущий шар.

Таким образом, количество путей, ведущих к данному шарику, равно сумме количеств путей, ведущих к шарикам, расположенным непосредственно над ним (в зависимости от положения их может быть до трех).

То, что мы получили, называют пирамидой Паскаля, а числа на каждом уровне являются коэффициентами в триномиальном разложении выражения (x + y + z)n.

Найдите, сколько коэффициентов в разложении (x + y + z)123456, кратных 4·1013.

Задачу решили: 5
всего попыток: 16
Задача опубликована: 26.07.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Посмотрим на десятичную запись первых неотрицательных целых чисел:

0 1 2 3 4 5 6 7 8 9 10 11 12....

Выберем одну из цифр, например единицу (d=1), а затем начнем выписывать наши числа, подсчитывая количество использованных единиц. Обозначим полученное количество через  f(n,1) и запишем его против каждого числа n. Вот что получится:

n    f(n,1)
0    0
1    1
2    1
3    1
4    1
5    1
6    1
7    1
8    1
9    1
10    2
11    4
12    5


Заметьте, что f(n,1) не равно 3 ни при каких n.
Уравнение f(n,1)=n имеет решения n=0 и n=1, а следующее решение - только n=199981.

Аналогично, подсчитаем, сколько раз мы использовали цифру d, и обозначим полученное количество через f(n,d).
Заметим, что для каждой цифры d, кроме нуля, n=0 является первым решением уравнения f(n,d)=n.
Обозначим через s(d) сумму всех решений уравнения f(n,d)=n. Например, s(1)=22786974071.

Найдите ∑ s(d) при 0 ≤ d ≤ 9.

Замечание: Если для какого-то n f(n,d)=n для нескольких значений d, n необходимо учитывать каждый раз для каждой цифры d.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 02.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Рассмотрим диофантово уравнение 1/a+1/b= p/10n, где a, b, p, n - положительные целые числа, и a ≤ b. При n=1 это уравнение имеет 20 приведенных ниже решений:

1/1+1/1=20/10 1/1+1/2=15/10 1/1+1/5=12/10 1/1+1/10=11/10 1/2+1/2=10/10
1/2+1/5=7/10 1/2+1/10=6/10 1/3+1/6=5/10 1/3+1/15=4/10 1/4+1/4=5/10
1/4+1/20=3/10 1/5+1/5=4/10 1/5+1/10=3/10 1/6+1/30=2/10 1/10+1/10=2/10
1/11+1/110=1/10 1/12+1/60=1/10 1/14+1/35=1/10 1/15+1/30=1/10 1/20+1/20=1/10

А сколько решений будет иметь это уравнение при n=16?

Задачу решили: 10
всего попыток: 14
Задача опубликована: 16.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: aram_gyumri (Арам Оганесян)

Составное число может быть разложено на множители разными способами. Например, (если не учитывать умножение на 1) число 24 может быть разложено на множители семью различными способами:
24 = 2×2×2×3
24 = 2×3×4
24 = 2×2×6
24 = 4×6
24 = 3×8
24 = 2×12
24 = 24
Напомним, что "цифровым корнем" десятичного числа называют величину, получаемую суммированием его цифр. Если в результате получается число большее, чем 9, эту операцию повторяют несколько раз до тех пор, пока не получится число, меньшее, чем 10. Например, цифровой корень числа 467 равен 8.

Теперь для каждого разложения числа 24 найдем сумму цифровых корней сомножителей:

Разложение Сумма цифровых корней
2×2×2×3 9
2×3×4 9
2×2×6 10
4×6 10
3×8 11
2×12 5
24 6

Максимальная сумма цифровых корней для всех разложений числа 24 равна 11.
Обозначим максимальную сумму цифровых корней для всех разложений числа n через mdrs(n).
Найдите наименьшее n, для которого mdrs(n)>60.

Задачу решили: 11
всего попыток: 17
Задача опубликована: 23.08.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MakcuM (Максим Владимирович)

Для натурального N вычислим N!, отбросим все нули справа, возьмем число, образованное четырьмя последними цифрами, и обозначим его через f(n).

Например:

9! = 362880 и f(9)=6288

10! = 3628800 и f(10)=6288

20! = 2432902008176640000 и f(20)=7664

Найдите f(1014).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.