Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
7
всего попыток:
22
Сколько существует таких 20-значных чисел, что в их десятичной записи сумма любых трех последовательных цифр не меньше шести, но не превышает одиннадцати?
Задачу решили:
6
всего попыток:
17
Клетки квадрата 4х4 заполнены цифрами от 0 до 9 таким образом, что суммы цифр в строках, в столбцах и в двух главных диагоналях таблицы равны. Например, в этой таблице
такие суммы равны 12.
Задачу решили:
2
всего попыток:
4
Для двух натуральных чисел a и b определим последовательность Улама следующим образом:
Задачу решили:
7
всего попыток:
18
Для натурального числа n обозначим через g(n) число, полученное перестановкой двух последних цифр в начало, например g(153846)= 461538. Оказывается, что для числа 153846 g(n) кратно n. Действительно, 461538=153846×3. Кроме того, g(n)≠n.
Задачу решили:
5
всего попыток:
6
Рассмотрим сколькими способами можно представить натуральное число n в виде суммы степеней 2, используя при этом каждую из степеней не более чем четырежды. Полученное число обозначим через f(n).
Задачу решили:
13
всего попыток:
17
Рассмотрим прямоугольный параллелепипед со сторонами 84, 2103, 9657. Заметьте, что, записав три измерения этого параллелепипеда в десятичной системе счисления, мы использовали каждую цифру ровно один раз. Будем называть такой параллелепипед интересным.
Задачу решили:
7
всего попыток:
23
Обозначим через f(n) сумму кубов десятичных цифр натурального числа n, например:
Задачу решили:
12
всего попыток:
32
Сколько существует 18-значных чисел, в десятичной записи которых
Задачу решили:
6
всего попыток:
6
Рассмотрим сколькими способами можно представить натуральное число n в виде суммы степеней 2, используя при этом каждую из степеней не более чем дважды. Полученное число обозначим через f(n).
Задачу решили:
10
всего попыток:
14
У каждого из четырех прямоугольных треугольников со сторонами (9,12,15), (12,16,20), (5,12,13) и (12,35,37) длина одного из катетов равна 12. Можно доказать, что других прямоугольных треугольников с целыми сторонами и катетом длиной 12 нет. Таким образом, различных прямоугольных треугольников с целыми сторонами и катетом длиной 12 существует ровно четыре.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|