img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 32
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Рассмотрим три семейства функций:

f1,n(x,y,z) = xn+1 + yn+1 – zn+1

f2,n(x,y,z) = (x y + y z + z x)*(xn-1 + yn-1 – zn-1)

f3,n (x,y,z) = – x y z * (xn-2 + yn-2 – zn-2)

и их сумму:

fn (x,y,z) = f1,n (x,y,z) + f2,n (x,y,z) + f3,n (x,y,z)

Будем называть (x,y,z) золотой тройкой порядка k, если x, y и z – положительные рациональные числа, представимые в виде правильных дробей со знаменателем, не превышающим k, и существует такое целое n, что fn (x,y,z) = 0

Обозначим через s(x,y,z) = x + y + z.

Найдите сумму всех различных значений s для золотых троек порядка 50. Результат округлите до ближайшего целого. 

Задачу решили: 11
всего попыток: 20
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим число 44456656. Заметим, что соседние десятичные цифры в его десятичной записи отличаются не более чем на единицу. Будем называть такие натуральные числа ступенчатыми.
Найдите, сколько существует ступенчатых чисел, не превышающих 1040 и содержащих в своей десятичной записи все цифры от 0 до 9.

Задачу решили: 33
всего попыток: 38
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим делители четырех последовательных натуральных чисел 242, 243, 244 и 245:

Число    Делители
242    1, 2, 11, 22, 121, 242
243    1, 3, 9, 27, 81, 243
244    1, 2, 4, 61, 122, 244
245    1, 5, 7, 35, 49, 245

Обратите внимание, что все эти числа имеют одинаковое количество делителей, а именно шесть.
Найдите количество натуральных чисел n, не превышающих 107, для которых числа n, n+1, n+2 и n+3 имеют одинаковое количество делителей.

Задачу решили: 10
всего попыток: 20
Задача опубликована: 26.12.10 00:13
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Сообщение в системе шифрования RSA представляет собой некоторое число m. Если необходимо зашифровать текст, сначала его каким-то известным образом превращают в число, а затем происходит собственно шифрование.

Шифрование осуществляется следующим образом:

  • Выбирают два различных простых числа p и q.
  • Вычисляют n=pq и φ=(p-1)(q-1). Число n должно быть достаточно велико, чтобы сообщения m попадали в интервал [0,n-1].
  • Выбирают целое число e, 1<e<φ, не имеющее общих делителей с φ (gcd(e,φ)=1).
  • Из числа m получают зашифрованное сообщение c=me mod n (здесь a mod b означает остаток от деления a на b).

Чтобы расшифровать текст, действуют следующим образом:

  • Находят число d такое, что ed=1 mod φ
  • Для зашифрованного сообщения c, вычисляют m=cd mod n.

Однако иногда попадаются такие неудачные сочетания e и m, что me mod n=m. Будем называть такие сообщения нескрытыми. Необходимо выбирать e таким образом, чтобы нескрытых сообщений было меньше. Например, пусть p=19 и q=37.
Тогда n=19*37=703, и φ=18*36=648.
Если мы выберем e=181, абсолютно все сообщения m (0≤m≤n-1) окажутся нескрытыми, хотя условие gcd(181,648)=1 выполняется. Такой выбор крайне неудачен.
К сожалению, для любого e, выбранного согласно указанным правилам, всегда найдется сколько-то нескрытых сообщений.
Возьмем p=1009 и q=3643. Найдите количество таких e, 1<e<φ(1009,3643) gcd(e,φ)=1, для которых количество нескрытих сообщений минимально.

Задачу решили: 12
всего попыток: 14
Задача опубликована: 27.12.10 08:00
Прислал: mikev img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Возьмем натуральное число N и разделим его на k равных частей r=N/k. Тогда N = r + r + ... + r. Обозначим через P произведение этих частей: P = r × r × ... × r = rk. Например, если разделить 11 на пять равных частей (11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2), P окажется равным 2.25 = 51.53632. Обозначим через Pmax(N) максимальное значение P, которое можно получить для данного значения N. Оказывается, что для N=11 максимум достигается при k=4: Pmax= (11/4)4= 14641/256 = 57.19140625. Это число является конечной десятичной дробью. Однако для N=8 максимум достигается при разбиении на три части: Pmax= 512/27, и это число не может быть представлено в виде конечной десятичной дроби. Определим функцию D(N) как число десятичных знаков после запятой в Pmax(N) для случая, когда Pmax(N) представимо конечной десятичной дробью. В случае, когда Pmax(N) не может быть представлено в виде конечной десятичной дроби, будем считать, что D(N)=0. Например, D(11)=8, D(8)=0. Для 5 ≤ N ≤ 100 ΣD(N)=1027. Найдите ΣD(N) для 5 ≤ N ≤ 10000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.