img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 10
всего попыток: 11
Задача опубликована: 05.04.10 08:00
Прислал: Dremov_Victor img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Рассмотрим степенной ряд AG(x)=x * G1+x2 * G2 + x3 * G3 + ... , где через Gk обозначен k-ый член последовательности 1, 4, 5, 9, 14, 23, ... , задаваемой рекуррентным соотношением
Gk = Gk - 1 + Gk - 2, G1 = 1 и G2 = 4.

Мы интересуемся такими x, для которых AG(x) является натуральным. 

Ниже для первых пяти натуральных чисел приведены соответствующие значения x.

x              AG(x)
(sqrt(5) - 1)/4    1
2/5    2
(sqrt(22) - 2)/6    3
(sqrt(137) — 5)/14    4
1/2    5

Мы будем называть число AG(x) золотым самородком, если x рациональное, так как с ростом AG(x) они встречаются все более и более редко. Так, например, двадцатый золотой самородок равен 211345365.

Найдите 40-й золотой самородок.

Задачу решили: 8
всего попыток: 11
Задача опубликована: 12.04.10 08:00
Прислал: Dremov_Victor img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Поделим с остатком натуральное число n на d. Пусть неполное частное равно q, а остаток r. Иногда числа d, q и r, записанные в некотором порядке, образуют геометрическую прогрессию.

Для примера поделим с остатком 58 на 6. Получим неполное частное 9 и остаток 4. Видим, что 4, 6, 9 образуют геометрическую прогрессию (со знаменателем 3/2).
Мы будем называть такие числа n прогрессивными.

Некоторые прогрессивные числа, такие как 9 или 10404 = 1022, являются полными квадратами.
Оказывается, что 97344 - это наибольший прогрессивный полный квадрат, меньший ста тысяч.

Найдите наибольший прогрессивный полный квадрат, меньший одного триллиона (1012).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.