img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 19
Задача опубликована: 04.01.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

Найдите максимально возможную площадь десятиугольника, стороны которого равны 1,2,3,4,5,6,7,8,9,10. Ответ умножьте на 100000 и округлите до ближайшего целого числа.

Задачу решили: 4
всего попыток: 23
Задача опубликована: 07.02.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

Есть N2 ферзей N разных определённых цветов, по N ферзей каждого цвета. Обозначим как X(N) количество способов расставить все эти ферзи на шахматной доске размера N на N так, чтобы ферзи одного цвета не находились под ударом друг друга. Чему равна сумма X(3) + X(4) + X(5) + X(6) + X(7) + X(8) + X(9) + X(10)? (Координаты клеток доски, а также цвета ферзей, однозначно определены, поэтому разные позиции, подучающиеся одна от другой поворотом, симметрическим отображением или сменой цветов, считаются разными).

Задачу решили: 1
всего попыток: 12
Задача опубликована: 03.02.14 08:00
Прислал: TALMON img
Источник: Задача 84 раздела "Математика".
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg

Хозяйка испекла для гостей пирог. К ней может прийти либо 7, либо 8, либо 9 человек. Число N - наименьшее число кусков, на которое ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну и между семью, и между восемью, и между девятью гостями.

Сколько существует различных разбиений пирога на таких N кусков?

Замечания.

1. Нужно считать только разбиения на куски, кратные 1/(7*8*9) части пирога.

2. Если из какого-то разбиения можно скомпоновать нужные части несколькими способами, то это разбиение всё равно считается только один раз.

Задачу решили: 2
всего попыток: 3
Задача опубликована: 01.12.22 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2314.
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для каждого натурального n определим функцию f(n) как количество хорд параболы y=x², концы которых имеют целочисленные координаты, и квадрат длины которых равен n.

Например, f(4)=1, f(2)=2, f(3)=0 и f(50)=4. На рисунке

изображены 4 хорды с целочисленными координатами концов и квадратом длины равным 50.

Найдите наименьшее число n, для которого f(n)=8.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.