![]()
Лента событий:
MikeNik решил задачу "Правильный 2025-угольник" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
32
Найдите все натуральные x, y, z, такие что x+y+z < 10000000, x > y > z > 0 и x + y, x - y, x + z, x - z, y + z, y - z все являются полными квадратами. В ответ запишите сумму всех найденных чисел. ![]()
Задачу решили:
14
всего попыток:
32
Для выражения (2a+1)n + (2a-1)n, для каждого конкретного a, остатки при делении этого выражения на a2 могут отличаться для разных n. Найдите сумму всех максимальных (при изменении n) остатков при делении выражения на a2, для a от 5 до 2009 включительно. ![]()
Задачу решили:
20
всего попыток:
26
Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42. 1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1. Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
![]()
Задачу решили:
14
всего попыток:
15
Замощение плоскости правильными шестиугольниками нумеруется начиная с 1 следующим образом: вначале один многоугольник выделяется и обозначается "1", затем против часовой стрелки начиная с направления вверх последовательно нумируется еще слой из 6 правильных многоугольников. И так далее каждый слой. Смотрите иллюстрацию, на ней пронумерованы первые три слоя. Для каждого числа n найдем модули разности между ним и его шестью соседями. Определим PD(n) количество простых модулей разности среди них. Например, для числа 8 модули разности такие: 12, 29, 11, 6, 1 и 13. Таким образом PD(8) = 3. А для числа 17 разности: 1, 17, 16, 1, 11 и 10, то есть PD(17) = 2. Можно показать, что значения PD(n) не превосходит 3, для любых n. Выпишите все n делящиеся на 5, начиная с меньших n, для которых PD(n) равно 3. В ответ запишите 1000-е такое n.
(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
![]()
Задачу решили:
6
всего попыток:
8
Рассмотрим "единичные" числа, числа состоящие из нескольких цифр "1". Обозначим R(k) число состоящее из k единиц; например, R(6) = 111111. Пусть n - натуральное и НОД(n, 10) = 1. Тогда можно показать, что всегда найдется k, такое что R(k) делится на n, обозначим A(n) минимальное из подходящих k. Например, A(7) = 6, А(41) = 5. Нас интересует отношение n/A(n). Для n<90, n для которого отношение n/A(n) минимально равно 61. ![]()
Задачу решили:
13
всего попыток:
49
Натуральные числа x, y и z являются последовательными членами арифметической прогрессии. Для каждого n найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решений будет ровно 25. Минимальным таким n является 26880. Найдите сумму всех n для которых ровно 25 решений, среди n меньших 1000000. ![]()
Задачу решили:
11
всего попыток:
15
Натуральные числа x, y и z являются последовательными членами арифметической прогрессии. Для каждого n можно найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решение будет единственным. Например для n = 20, только одно решение 132 - 102 - 72 = 20. Для n < 100 всего 25 таких n для которых решение единственно. Найдите сколько таких n, меньших 100000000. ![]()
Задачу решили:
12
всего попыток:
20
Рассмотрим степенной ряд AF(x) = x * F1+x 2 * F2 + x3 * F3 + ... , где через Fk обозначено k-ое число Фибоначчи. (Числа Фибоначчи: 1, 1, 2, 3, 5, 8, ... ; то есть F1 = 1, F2 = 1, F3 = 2, Fk = Fk-1 + Fk-2.)
Мы будем называть число AF(x) золотым самородком, если x рациональное, так как с ростом AF(x) они встречаются все более и более редко. Так, например, десятый золотой самородок равен 74049690.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|