img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 12
всего попыток: 13
Задача опубликована: 23.11.09 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Игра проводится по следующим правилам.

Вначале в коробку кладут два шара - синий и красный. За ход предлагается вынуть наугад один из шаров. Затем вынутый шар возвращается в коробку и вдобавок в коробку кладется два шара красного цвета. Таких ходов делается n. Игра считается выигранной, если количество вынутых синих больше чем вынутых красных. Для n=3 вероятность выиграть равна 5/24. Если игра стоит 1 рубль, то максимальный целый выигрыш, который крупье может предложить, чтобы в среднем выигрывать, 4 рубля.

Найдите какой максимальный выигрыш можно предложить для аналогичной игры с 13 ходами.

Задачу решили: 20
всего попыток: 26
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: bbny

Радикальное число для числа n, rad(n) это произведение всех различных простых множителей числа n. Например, 504 = 23*32*7, и rad(n) = 2*3*7 = 42.
Будем рассматривать тройки натуральных чисел (a, b, c) обладающие следующими свойствами:

1. НОД(a, b) = НОД(a, c) = НОД(b, c) = 1.
2. a < b
3. a + b = c
4. rad(abc) < c

Например, такой тройкой является (5, 27, 32):
НОД(5, 27) = НОД(5, 32) = НОД(27, 32) = 1
5 < 27
5 + 27 = 32
rad(4320) = 30 < 32

Для некоторых c имеется более одной такой тройки (a, b, c). До 10000 таких c всего 15.

Найдите сколько существует c меньших 100000, для которых существует более одной тройки (a, b, c), обладающих описанными выше свойствами.

(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили: 14
всего попыток: 14
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Наименьшее число единичных кубиков, необходимое, чтобы закрыть поверхность прямоугольного параллелепипеда 3х2х1, равно двадцати двум.



Чтобы добавить второй слой кубиков, закрывающих поверхность полученного тела, понадобится сорок шесть кубиков; для третьего слоя необходимо семьдесят восемь кубиков, а для четвертого - сто восемнадцать кубиков.

Первый слой параллелепипеда 5х1х1 также состоит из двадцати двух кубиков; аналогично первый слой в параллелепипедах 5х3х1, 7х2х1 и 11х1х1 состоит из сорока шести кубиков.

Обозначим за C(n) количество параллелепипедов, содержащих n кубиков в одном из своих слоев. Тогда С(22) = 2, С(46) = 4, С(58) = 5, С(82) = 7.

Оказывается, что сумма всех трехзначных n, для которых С(n) = 5, составляет 930.

Найдите сумму всех пятизначных n, для которых C(n) = 500.

(Будьте внимательны! Проверка задачи будет осуществляться только после завершения турнира.)
Задачу решили: 14
всего попыток: 15
Задача опубликована: 24.12.09 00:19
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: General (Алексей Извалов)

Замощение плоскости правильными шестиугольниками нумеруется начиная с 1 следующим образом: вначале один многоугольник выделяется и обозначается "1", затем против часовой стрелки начиная с направления вверх последовательно нумируется еще слой из 6 правильных многоугольников. И так далее каждый слой. Смотрите иллюстрацию, на ней пронумерованы первые три слоя.нумерация замощения

Для каждого числа n найдем модули разности между ним и его шестью соседями. Определим PD(n) количество простых модулей разности среди них.

Например, для числа 8 модули разности такие: 12, 29, 11, 6, 1 и 13. Таким образом PD(8) = 3.

А для числа 17 разности: 1, 17, 16, 1, 11 и 10, то есть PD(17) = 2.

Можно показать, что значения PD(n) не превосходит 3, для любых n.

Выпишите все n делящиеся на 5, начиная с меньших n, для которых PD(n) равно 3. В ответ запишите 1000-е такое n.

(Будьте внимательны! Проверка задач будет осуществляться только после завершения турнира.)
Задачу решили: 6
всего попыток: 8
Задача опубликована: 18.01.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Рассмотрим "единичные" числа, числа состоящие из нескольких цифр "1". Обозначим R(k) число состоящее из k единиц; например, R(6) = 111111.

Пусть n - натуральное и НОД(n, 10) = 1. Тогда можно показать, что всегда найдется k, такое что R(k) делится на n, обозначим A(n) минимальное из подходящих k. Например, A(7) = 6, А(41) = 5.

Нас интересует отношение n/A(n). Для n<90, n для которого отношение n/A(n) минимально равно 61

Найдите n для которого n/A(n) минимально среди n<1234567.

Задачу решили: 13
всего попыток: 49
Задача опубликована: 01.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Натуральные числа x, y и z являются последовательными членами арифметической прогрессии.

Для каждого n найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решений будет ровно 25. Минимальным таким n является 26880.

Найдите сумму всех n для которых ровно 25 решений, среди n меньших 1000000.

Задачу решили: 11
всего попыток: 15
Задача опубликована: 08.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Натуральные числа x, y и z являются последовательными членами арифметической прогрессии.

Для каждого n можно найдем количество решений уравнения x2 - y2 - z2 = n. Для некоторых n решение будет единственным. Например для n = 20, только одно решение 132 - 102 - 72 = 20.

Для n < 100 всего 25 таких n для которых решение единственно. Найдите сколько таких n, меньших 100000000.

Задачу решили: 12
всего попыток: 20
Задача опубликована: 15.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Рассмотрим степенной ряд AF(x) = x * F1+x 2 * F2 + x3 * F3 + ... , где через Fk обозначено k-ое число Фибоначчи. (Числа Фибоначчи: 1, 1, 2, 3, 5, 8, ... ; то есть F1 = 1, F2 = 1, F3 = 2, Fk = Fk-1 + Fk-2.)
В этой задаче нам интересны такие x, для которых AF(x) является натуральным. Неожиданно
AF(1/2) = (1/2)*1 + (1/2)2*1 + (1/2)3*2 + (1/2)4*3 + (1/2)5*5 + ...
= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ...
= 2


Ниже для первых пяти натуральных чисел приведены соответствующие значения x.

 

x

AF(x)

√2-1

1
1/2

2

(13-2)/3

3

(89-5)/8

4

(34-3)/5

5

Мы будем называть число AF(x) золотым самородком, если x рациональное, так как с ростом AF(x) они встречаются все более и более редко. Так, например, десятый золотой самородок равен 74049690.
Найдите сумму первых 20 золотых самородков.

Задачу решили: 12
всего попыток: 33
Задача опубликована: 22.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Рассмотрим равнобедренный треугольник с основанием b = 16 и боковыми сторонами L = 17.

Применяя теорему Пифагора, видим, что высота треугольника
h = √(172 - 82) = 15, что на единицу меньше основания.
Для b = 272 и L = 305 мы имеем h = 273, что на единицу больше основания, и это второй по величине равнобедренный треугольник со свойством h = b ± 1.

Найдите сумму периметров десяти наименьших равнобедренных треугольников, для которых h = b ± 1 и b, L натуральные числа.

Задачу решили: 11
всего попыток: 16
Задача опубликована: 29.03.10 08:00
Прислал: morph img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

Пусть (a, b, c) - тройка сторон прямоугольного треугольника и c гипотенуза. Причем a, b и с - натуральные. Возможно сложить четыре таких треугольника вместе, чтобы составить квадрат с квадратным отверстием.

Например, 4 треугольника со сторонами (3, 4, 5) могут быть сложены вместе чтобы составить квадрат 5 на 5 с отверстием 1 на 1 посредине. При этом квадрат 5 на 5 можно замостить 25 квадратами 1 на 1 (такими как отверстие).

А для треугольника (5, 12, 13) отверстие будет 7 на 7, но квадратами 7 на 7 невозможно покрыть квадрат 13 на 13.

Какова сумма периметров прямоугольных треугольников (a, b, c), таких что a < b, длины сторон взаимнопросты (НОД(a, b, c) = 1) и для которых можно квадрат со стороной c покрыть квадратами равными образующемуся отверстию, среди прямоугольных треугольников с периметрами меньшими 100000000?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.