Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
8
Высота над уровнем моря на острове Буян определяется формулой , Примечание. Для вашего удобства формула высоты записана в более удобном для программирования виде: h=( 5000-0.005*(x*x+y*y+x*y)+12.5*(x+y) ) * exp( -abs(0.000001*(x*x+y*y)-0.0015*(x+y)+0.7) )
Задачу решили:
4
всего попыток:
9
Представьте, что у вас появилась возможность вложить свой трудовой рубль и стать рублевым миллиардером.
Задачу решили:
3
всего попыток:
4
Корнем многочлена P(x) называют решение уравнения P(x) = 0.
Задачу решили:
0
всего попыток:
1
Функция Аккермана рекурсивно задается для неотрицательных целых чисел и следующим образом: Например, , и . Чему равен остаток от деления на 148, где ?
Задачу решили:
4
всего попыток:
10
Альберт выбирает натуральное число k и два случайных вещественных числа, a и b, равномерно распределенных на промежутке [0,1]. Затем он вычисляет квадратный корень из суммы (k·a + 1)2 + (k·b + 1)2 и округляет его вниз до целого. Если результат оказывается равным k, Альберт получает k очков, в противном случае он не получает ничего.
Задачу решили:
7
всего попыток:
11
Как известно, последовательность Фибоначчи определяется рекуррентно: f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1. Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106. Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.
Задачу решили:
3
всего попыток:
3
Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом. Проигрывает тот, кто не может сделать очередной ход. Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c). Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными. Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция. Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.
Задачу решили:
0
всего попыток:
0
Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n. Например, U( 1234567890, 107-10) = 24. Найдите U(1234567890987654321, 1012-10).
Задачу решили:
4
всего попыток:
6
Круглое болото разбито на секторы, перенумерованные по часовой стрелке числами от 1 до 500. Лягушка, сидящая в одном из секторов, может прыгнуть в один из двух соседних секторов с равной вероятностью. Перед тем, как прыгнуть, лягушка квакает. Если номер сектора, в котором сидит лягушка, является простым числом, она с вероятностью 2/3 квакает "P" и с вероятностью 1/3 квакает "N". Если номер сектора, в котором сидит лягушка, не является простым числом, она с вероятностью 2/3 квакает "N" и с вероятностью 1/3 квакает "P". Предположим, что в начальный момент лягушка может занимать любой из секторов с равной вероятностью. Подсчитайте вероятность того, что после 15 прыжков лягушачью песнь можно будет закодировать последовательностью PPPPNNPPPNPPNPN. Результат представьте в виде несократимой дроби, а в качестве ответа укажите ее числитель.
Задачу решили:
2
всего попыток:
3
Сферическим треугольником называют фигуру на поверхности сферы, ограниченную дугами больших кругов, имеющими попарно общие концы.
Пусть C(r) – сфера с центром в начале координат (0,0,0) и радиусом r. Пусть Z(r) – множество точек сферы C(r) с целыми координатами. Пусть T(r) – множество сферических треугольников с вершинами, принадлежащими Z(r). Вырожденные сферические треугольники с вершинами, принадлежащими одному большому кругу, не включаются в T(r). Пусть A(r) – наименьшая площадь треугольника из T(r), а B(r) =(4πr2)/A(r) – величина, обратная доле площади сферы, которую занимает наименьший сферический треугольник. Например, A(14) ≈3,294040, а B(14) ≈ 748. Найдите максимальное значение B(r) для натуральных r, не превышающих 50. Результат округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|