img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 6
всего попыток: 16
Задача опубликована: 04.07.09 09:14
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.

Задачу решили: 11
всего попыток: 30
Задача опубликована: 01.09.09 00:50
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее.

Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.

Задачу решили: 6
всего попыток: 18
Задача опубликована: 10.09.09 09:02
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
баллы: 100

На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243.

Тот же граф можно представить следующей матрицей:

  A B C D E F G
A - 16 12 21 - - -
B 16 - - 17 20 - -
C 12 - - 28 - 31 -
D 21 17 28 - 18 19 23
E - 20 - 18 - - 11
F - - 31 19 - - 27
G - - - 23 11 27 -

Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.

 

Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой
wij =  wji = (69069(i - j)2(i + j))(mod 1000)

Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?

Задачу решили: 51
всего попыток: 92
Задача опубликована: 28.06.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: katalama (Иван Максин)

Цепочки цифр (строки) создаются по следующему правилу:
Первая строка состоит из двух цифр "1". Каждая из последующих цепочек создается такими действиями: берется цифра, на единицу большая максимальной цифры, использовавшейся в предыдущей строке. Эта цифра вставляется в начало, в конец и между всеми цифрами предыдущей строки. Вот первые 4 строки, созданные по этому правилу:
(1) 11
(2) 21212
(3) 32313231323
(4) 43424341434243414342434

Таким образом, было построено еще 5 строк и в результате получена строка, содержащая цифры от 1 до 9 и состоящая из 767 цифр. Введите в ответ число состоящие из цифр стоящих на 300-м и 301-м местах от начала.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 28.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Рассмотрим граф, составленный из блоков A и B, показанных на рисунке:

A B

Блоки соединяются вдоль вертикальных ребер в различном порядке, например, вот так:

Вершины графа будем раскрашивать, используя не более c цветов таким образом, чтобы связанные ребром вершины были окрашены в разные цвета.

Теперь подсчитаем, сколько разноцветных графов можно составить, используя a блоков A, b блоков B и не более c цветов.
Используя один блок A и три цвета, можно получить 24 различных графа. (a=1, b=0, c=3)
Используя два блока B и четыре цвета, можно получить 92928 различных графа. (a=0, b=2, c=4)
Используя два блока A, два блока B и три цвета, можно получить 20736 различных графа. (a=2, b=2, c=3)
А сколько различных графов можно получить, используя не более c=2011 цветов и 100 блоков A или B (a+b=100), так, чтобы a и b были четными числами?
В качестве ответа укажите 8 последних цифр результата.

Задачу решили: 2
всего попыток: 2
Задача опубликована: 29.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

В данной задаче мы будем рассматривать "ориентированные" тетраэдры, координаты вершин которых имеют вид:
{(x, y, z), (x+a, y, z), (x,y+a,z), (x,y,z+a)}, a>0, и x,y,z,a – целые числа. Объем такого тетраэдра равен a3/6.
Если мы захотим найти общий объем объединения нескольких ориентированных тетраэдров, то, возможно, он окажется меньше суммы их объемов, если некоторые из тетраэдров пересекаются.
Построим последовательность ориентированных тетраэдров T1, T2, …, Tn,… следующим образом:
xn = S4n-3 (mod 10000)
yn = S4n-2 (mod 10000)
zn = S4n-1 (mod 10000)
an = 1+S4n (mod 699),
а Sk  получены при помощи генератора случайных чисел Фибоначчи с запаздываниями:
При 1≤k≤55, Sk = [100003 - 200003k + 300007k3] (mod 1000000), и при 56≤k, Sk = [Sk-24  + Sk-55 ] (mod 1000000).
(p (mod q) означает остаток от деления p на q.)
Таким образом, у тетраэдра T1 x =7, y=53, z=183, a=655, у тетраэдра T2 x =863, y=1497, z=2383, a=112 и т.д.
Объем объединения первых 300 ориентированных тетраэдров T1 … T300 равен 3999927695 (по счастливому совпадению это число оказалось целым).
Найдите объем объединения первых 50000 ориентированных тетраэдров T1 … T50000 (благодаря еще одному счастливому совпадению это число тоже целое).

Задачу решили: 2
всего попыток: 2
Задача опубликована: 18.07.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

В игру "Погоня" играет четное количество игроков за круглым столом двумя игральными костями.
В начале игры два игрока, сидящие друг напротив друга, получают каждый по кости. Каждую секунду игроки, получившие кость, делают ход. Для этого они одновременно бросают кубик, и если выпадает 1, они передают кость соседу слева, а если выпадет 6 – соседу справа. В остальных случаях кубик остается у игрока до следующего хода. Игра заканчивается, когда оба кубика после очередного хода окажутся у одного игрока. Этот игрок считается проигравшим.
Однажды за стол сели играть 100 игроков. Их перенумеровали подряд по часовой стрелке. Спустя некоторое время кубики оказались у игроков № 33 и № 77.
Каково ожидаемое время до конца игры?
Ответ дайте в миллисекундах, округлив его до целого.

Задачу решили: 5
всего попыток: 43
Задача опубликована: 10.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В зале театра 40 нумерованных мест, а продано всего 18 билетов. Сколькими способами можно рассадить зрителей так, чтобы ровно 8 из них сидели на своих местах?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.