Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
87
всего попыток:
141
В 2009 году в России имеются банкноты достоинством 5, 10, 50, 100, 500, 1000 и 5000 рублей. Сколько существует способов при помощи банкнот составить сумму 16 тысяч рублей.
Задачу решили:
45
всего попыток:
61
Найти минимальное n, такое что в записи n! встречаются все двухзначные числа.
Задачу решили:
6
всего попыток:
16
В куче имеется 10000 камней. Все камни имеют разные веса и все веса выражаются простыми числами последовательно от первого до десятитысячного простого числа. Кучу раскладывают на 28 куч так, чтобы в результате раскладки самая тяжелая куча имела минимальный вес. Укажите этот вес.
Задачу решили:
11
всего попыток:
30
Шахматная доска пронумерована "змейкой": нижняя (первая) строка слева-направо числами 1-8, следующая (вторая) справа налево - 9-16, следующая снова слева направа - 17-24 и так далее. Конь может начать движение с любого поля и сделать 8 ходов по разным клеткам. Найдите максимальную сумму чисел на клетках, которые он может посетить, включая начальную клетку.
Задачу решили:
6
всего попыток:
18
На рисунке представлен неориентированный граф, содержащий семь вершин и 12 ребер, суммарный вес которых составляет 243. Тот же граф можно представить следующей матрицей:
Однако, некоторые ребра можно "сэкономить", не нарушая связности графа. Граф, в котором достигается максимальная экономия, представлен ниже. Его вес - всего 93, а "экономия" по сравнению с исходным графом составляет 243-93 = 150.
Пусть задан граф, содержащий 40 вершин, занумерованных числами от 0 до 39. Вес ребра, соединяющего вершины i и j, выражается формулой Какой максимальной экономии можно добиться, удаляя лишние ребра без потери связности графа?
Задачу решили:
12
всего попыток:
34
На плоскости размещен правильный 32-угольник с центром в начале координат и одной из вершин, находящейся в точке с координатами (0,1000). Из него вырезали правильный 7-угольник, у которого также центр в начале координат, а одна из вершин в той же точке (0,1000). Сколько в оставшейся части 32-угольника внутренних точек, которые имеют целочисленные координаты?
Задачу решили:
59
всего попыток:
88
Число X = (3232 + 44 -1) * 1616 + 88 -1 перевели из десятичной в двоичную систему счисления. Сколько единиц получилось в двоичной записи числа?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|