img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: SERGU решил задачу "Хитрая змейка Рубика" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 4
Задача опубликована: 18.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: Shamil

Обозначим через N(i) наименьшее натуральное число n,  факториал которого n! делится на (i!)1234567890 .

Сумма N(i) для всех составных натуральных i, не превышающих 1000, равна 520804933959105.

Найдите сумму N(i) для всех составных натуральных i, не превышающих 1 000 000. В качестве ответа укажите 18 младших разрядов результата.

Задачу решили: 7
всего попыток: 7
Задача опубликована: 25.03.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Горизонтальная полоска состоит из 2n + 1 клеток. Средняя клетка оставлена пустой, слева от нее в n клетках стоят красные фишки, а справа – синие. На рисунке показано расположение фишек для случая n = 3.

eu321-1.png  

Фишки могут совершать ходы двух видов: шаги, когда фишка перемещается на соседнюю незанятую клетку, и скачки, когда одна фишка перепрыгивает через другую в следующую непосредственно за нею пустую клетку.

eu321-2.png  

Обозначим через M(n) минимальное количество ходов, необходимое для того, чтобы поменять местами синие и красные фишки, так, чтобы красные фишки оказались справа от центра, а синие – слева.

Легко проверить, что M(3) = 15, а 15 является треугольным числом.

Построим последовательность таких n, для которых M(n) является треугольным числом.

В этой последовательности ровно пять чисел, не превышающих 100, а именно 1, 3, 10, 22 и 63. Их сумма равна 99.

Найдите сумму всех n, не превышающих 1017, для которых M(n) является треугольным числом.

Задачу решили: 1
всего попыток: 1
Задача опубликована: 22.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 2
сложность: 2 img
баллы: 100

Обозначим через f(n) количество способов, которыми можно построить башню 3×3×n из блоков 2×1×1.

Блоки можно вращать произвольным образом. При этом башни, отличающиеся поворотом или симметрией, считаются различными.

Например, 

f(2) = 229,

f(4) = 117805,

f(6) = 64647289,

f(63) mod 123456789 = 75292539,

f(66) mod 123456789 = 56150940.

Здесь a mod q означает остаток от деления a на q.

Найдите f(612345) mod 123456789.

 
Задачу решили: 2
всего попыток: 2
Задача опубликована: 13.05.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Несколько комнат последовательно соединены автоматическими дверями, как показано на рисунке.

 eu327.png

Двери открывают с помощью карт доступа. При этом каждую карту можно использовать лишь однажды: когда вы проходите в комнату, двери за вами автоматически закрываются, а карта не возвращается. Аппарат в начале маршрута может выдать вам в любое время любое количество карт без ограничений, однако система слежения не позволяет иметь на руках более трех карт одновременно. При нарушении этого правила срабатывает сигнал тревоги, а все двери запираются навсегда. Поэтому если вы возьмете при входе три карты и пойдете прямо к выходу, то в комнате №3 у вас карт не останется, и вы окажетесь в ней заперты с обеих сторон.

К счастью, в каждой комнате есть сейф, куда можно складывать карты в любом количестве.

Пользуясь этими сейфами, вы сможете достичь выхода. Например, вы можете войти в комнату № 1, использовав одну карту, положить вторую карту в сейф, а с помощью третьей карты вернуться к началу маршрута. Получив там в аппарате еще три карты, вы используете одну, чтобы войти в комнату №1 и взять там из сейфа оставленную карту. Теперь у вас в руках снова будет три карты, и этого достаточно, чтобы открыть три оставшиеся до выхода двери. Итак, вы можете пройти анфиладу из трех комнат, использовав всего 6 карт.

6 комнат можно пройти, используя 123 карты и не имея на руках более 3 карт одновременно.

Пусть C - максимальное количество карт, которые можно иметь при себе.

Пусть R - количество комнат, через которые нужно пройти от входа (“Start”) до выхода (“Finish”).

Обозначим через M(C,R) минимальное количество карт, необходимых для прохода через R комнат, имея при себе не более C карт в каждый момент времени.

Например, M(3,6)=123 и M(3,7)=366.

Поэтому ΣM(3,R)=489 при 6≤R≤7.

Можно подсчитать, что ΣM(5,R)=2841 при 1≤R≤15.

Найдите ΣM(5,R) при 1≤R≤60.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 10.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

На каждую клетку доски N×N положили по шашке, окрашенной в белый цвет с одной стороны и в черный цвет с другой.

Каждым ходом разрешается перевернуть одну шашку, а вместе с нею N-1 шашек, стоящих  на одной с ней вертикали, и N-1 шашек, стоящих  на одной с ней горизонтали. Таким образом, каждым ходом игрок должен перевернуть 2×N-1 шашку. Игра заканчивается, когда все шашки будут стоять белой стороной вверх. Ниже приведен пример игры для доски 5×5.

eu331.gif  

Несложно проверить, чтобы закончить игру из данной начальной позиции, нужно как минимум 3 хода.

Пусть строки и столбцы перенумерованы целыми числами от 0 до N-1.

Построим на доске N×N начальную конфигурацию CN. Для этого на клетку с координатами x и y положим шашку черной стороной вверх, если (N-1)2≤x2+y2<N2, и белой стороной вверх в противном случае. Конфигурацию C5 мы видели в приведенном примере.

Пусть T(N) – минимальное количество ходов, необходимых для окончания игры из начального положения CN (если это невозможно T(N) = 0).

Ясно , что T(1)=T(2)=1. Мы видели, что T(5)=3. Можно проверить, что T(10)=29, а T(1000)=395253.

Найдите сумму T(k!) для 1≤k≤12.

 
Задачу решили: 0
всего попыток: 12
Задача опубликована: 08.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 2 img
баллы: 100

Несколько чашек расставлены по кругу, и в каждой из них лежит одна горошина. Игрок совершает ходы следующим образом. Он берет все горошины из одной чашки и раскладывает их одну за другой в чашки, следующие за ней по часовой стрелке. При каждом следующем ходе горошины берут из той чашки, куда была положена последняя горошина на предыдущем ходе. Игра заканчивается, когда возвращается к исходному положению, т. е. в с каждой чашке снова оказывается по одной горошине. Вот игра для случая пяти чашек:

eu335.gif

   

Как видно, для пяти чашек игра заканчивается за 15 ходов.

Обозначим через M(x) количество ходов в игре с  x  чашками. Тогда M(5) = 15. Можно проверить, что M(100) = 10920.

Найдите остаток от деления \sum_{k=1}^{10^{18}}M(2^{k}) на 79.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.