img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дедушка и полтаблетки" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 17
Задача опубликована: 12.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: игрыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Ним – это игра, в которой двое участников по очереди берут камни, разложенные на несколько кучек. Каждым ходом игрок должен взять из одной кучки один или несколько камней, но хотя бы один – обязательно!

Проигрывает тот, кому камней не досталось, и кто поэтому не может сделать ход.

Мы рассмотрим наиболее популярную версию игры с тремя кучками камней.

Пусть начальная позиция описывается тройкой чисел (n1,n2,n3), где  n1,n2 и n3 - количество камней в каждой из трех кучек.

  • Позиция называется выигрышной, если первый игрок, правильно выбрав стратегию, может гарантировать свою победу.
  • Позиция называется проигрышной, если первый игрок при правильной игре второго всегда проигрывает.

Например, позиция (0,n,n) – проигрышная для любых n, ибо второй игрок всегда может выравнивать количество камней в двух оставшихся кучках, пока в них что-то остается. По этой же причине позиция (1,2,3) – тоже проигрышная, ибо второй игрок своим ходом всегда может создать позицию вида (0,n,n), например:

Первый игрок: (1,2,1)         Второй игрок: (1,0,1)

Первый игрок: (0,0,1)         Второй игрок: (0,0,0) – победа.

Подсчитайте, сколько существует проигрышных позиций вида (n,2n,3n), где n – натуральное число, не превышающее 1012.

Задачу решили: 4
всего попыток: 5
Задача опубликована: 19.11.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2.

Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа.

Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы.

Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы.  Здесь φ(S) означает функцию Эйлера. 

Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51.

Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396.

Найдите количество 18-значных сильно ахиллесовых чисел.

Задачу решили: 7
всего попыток: 11
Задача опубликована: 03.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Как известно, последовательность Фибоначчи определяется рекуррентно:

f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1.

Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106.

Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.

Задачу решили: 3
всего попыток: 8
Задача опубликована: 10.12.12 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи:

S =1234567891011121314151617181920212223242...

Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее.

Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365.

Найдите ∑f(11k), где 1≤k≤6.

Задачу решили: 3
всего попыток: 3
Задача опубликована: 14.01.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом.

Проигрывает тот, кто не может сделать очередной ход.

Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c).

Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными.

Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция.

Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 15.04.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n.

Например, U( 1234567890, 107-10) = 24.

Найдите U(1234567890987654321, 1012-10).

 
Задачу решили: 2
всего попыток: 9
Задача опубликована: 24.06.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Любое натуральное число может быть разбито на слагаемые вида 2i×3j, где i,j ≥0, но в этой задаче мы будем рассматривать лишь те разбиения, у которых ни одно слагаемое не кратно другому. В дальнейшем будем называть такие разбиения специальными.

Например, разбиение числа 17 = 2 + 6 + 9 = (21×30 + 21×31 + 20×32) не будет специальным, поскольку 6 кратно 2. Разбиение 17 = 16 + 1 = (24×30 + 20×30) тоже не специальное, так как 16 кратно 1. У числа 17 есть только одно специальное разбиение, а именно 8 + 9 = (23×30 + 20×32).

Некоторые числа имеют несколько специальных разбиений. Например, число 11 имеет два специальных разбиения:

11 = 2 + 9 = (21×30 + 20×32

11 = 8 + 3 = (23×30 + 20×31)

Обозначим через P(n) количество специальных разбиений числа n. Так, P(11) = 2.

Можно подсчитать, что сумма простых чисел q<100, для которых P(q)=2 равна 641.

Найдите сумму простых q < 1000000, для которых P(q)=2.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 01.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg, игрыimg

Вообразите бесконечный в оба конца ряд чаш, перенумерованных целыми числами.

В некоторых чашах лежат бобы. Разрешается делать ходы следующего вида: взять два боба из одной чаши и разложить их в две соседние. Игра заканчивается, когда сделать ход невозможно.

В примере на рисунке в две соседние чаши положили 2 и 3 боба, а остальные чаши оставили пустыми. Как видно, такую игру можно закончить за 8 ходов.

 eu334.gif

Рассмотрим последовательность целых чисел bi следующего вида:

b0 = 0, b1 = 289, b2 = 145

bi = (bi-1 + bi-2 + bi-3) mod 2013,

где x mod y означает остаток от деления x на у.

Пусть количество бобов в двух соседних чашах определяется числами b1 = 289 и b2 = 145, а остальные чаши в начальном положении пусты. В этом случае игру можно закончить за 3419100 ходов.

Подсчитайте, сколько ходов потребуется для завершения игры , если в начальном положении в чашах с номерами от 1 до 1500 лежит b1, b2, ... b1500 бобов, соответственно, а остальные чаши пусты.

Задачу решили: 1
всего попыток: 1
Задача опубликована: 22.07.13 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Конечные последовательности натуральных чисел {a1, a2,..., an} длины n обладают следующими свойствами:
  • a1 = 6
  • При всех 1 ≤ i < n : φ(ai) ≤ φ(ai+1) < ai < ai+1,
где φ(x) – функция Эйлера.
Пусть S(N) — количество таких последовательностей с an ≤ N.
Например, при N=10 существует 5 таких последовательностей: {6}, {6, 8}, {6, 8, 9}, {6, 8, 10} и {6, 10}. Поэтому  S(10) = 5.
Можно проверить, что S(80) = 1195518449 и S(10 000) mod 108 = 60687582, где x mod y означает остаток от деления x на y.
Найдите S(20 000 000) mod 108
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.