Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
3
всего попыток:
5
Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11. R(d)= φ(d)/(d – 1), где φ – функция Эйлера. Теперь определим коэффициент сократимости C(d): C(d)= (d-φ(d))/(d – 1 ) C(p)=1/(p-1) Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Задачу решили:
4
всего попыток:
8
Дано множество простых чисел, не превышающих 5000:
Задачу решили:
5
всего попыток:
9
Найдите количество непустых подмножеств множества {1250250, 2250249, 3250248,... , 2502492, 2502501}, у которых сумма элементов кратна числу 250. В качестве ответа укажите 16 младших десятичных цифр результата.
Задачу решили:
5
всего попыток:
7
Тройку натуральных чисел (a,b,c) будем называть тройкой Кардано, если она удовлетворяет условию:
Например, тройка (2,1,5) является тройкой Кардано.
Задачу решили:
2
всего попыток:
3
Округлим квадратный корень из натурального числа n до ближайшего целого и будем называть полученный результат округленным квадратным корнем.
Задачу решили:
4
всего попыток:
9
Представьте, что у вас появилась возможность вложить свой трудовой рубль и стать рублевым миллиардером.
Задачу решили:
0
всего попыток:
3
Трудолюбивый муравей случайно блуждает по клетчатой доске 5х5, расположенной вертикально. Он начинает свое движение в центре доски, а его траектория состоит из вертикальных и горизонтальных отрезков, соединяющих центры соседних клеток. Направление каждого следующего отрезка он выбирает случайным образом и с равной вероятностью из 2, 3 или 4 возможных вариантов, в зависимости от своего положения. В начальный момент в каждой из пяти клеток нижнего ряда расположено по одному зерну. Если муравей свободен от ноши, и он оказывается в клетке нижнего ряда, содержащей зернышко, то он его забирает. Если муравей с зерном оказывается в свободной клетке верхнего ряда, то он оставляет зерно в этой клетке. Работа муравья считается завершенной, когда все зерна перенесены из нижнего ряда в верхний (понятно, что в каждой клетке верхнего ряда окажется по одному зерну). Какова средняя ожидаемая продолжительность работы муравья, если его путь на одну клетку вниз занимает 1 секунду, на одну клетку вверх – 3 секунды, а на одну клетку вправо или влево по горизонтали – 2 секунды? Ответ дайте в микросекундах, округлив вниз до целого.
Задачу решили:
5
всего попыток:
10
Мы хотим приготовить пиццу круглой формы, состоящую из m?n ломтей-секторов одного размера, но с разной начинкой. У нас есть m≥2 сортов начинки, и каждый сорт мы должны использовать ровно для n ломтей. Обозначим через f(m,n) количество способов приготовления пиццы, в которой будет ровно n ломтей, заправленных начинкой каждого из m сортов. Поскольку пиццу можно крутить как угодно вокруг вертикальной оси, но нельзя переворачивать начинкой вниз, зеркально симметричные варианты считаются различными, а варианты, отличающиеся только поворотом, предполагаются одинаковыми. Например, f(2,1)=1, f(2,2)=f(3,1)=2 и f(3,2)=16. Случай f(3,2) показан на рисунке:
Найдите сумму всех f(k,k), не превышающих 1015.
Задачу решили:
0
всего попыток:
1
Функция Аккермана рекурсивно задается для неотрицательных целых чисел и следующим образом: Например, , и . Чему равен остаток от деления на 148, где ?
Задачу решили:
7
всего попыток:
11
Как известно, последовательность Фибоначчи определяется рекуррентно: f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1. Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106. Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|