Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
23
Паук S сидит в углу комнаты, имеющей форму прямоугольного параллелепипеда и размеры 6×5×3. Муха F сидит в противоположном углу. Чтобы добраться до мухи, паук может ползти по стенам, полу или потолку комнаты. При этом он выбирает кратчайший возможный путь. В данном случае длина кратчайшего пути оказалась равной 10: Однако, не для всякой комнаты длина кратчайшего пути будет выражаться целым числом. Рассмотрим все комнаты, у которых длина, ширина и высота - целые числа, не превышающие M. Оказывается что для M=100 найдется ровно 2060 различных комнат, для которых длина кратчайшего пути будет целой, и это минимальное число, при котором количество решений превышает 2000, поскольку при M=99 будет только 1975 решений. Найти наименьшее число M, при котором число решений будет больше 100 000 000.
Задачу решили:
31
всего попыток:
92
В игре "Города" последовательно называют города, при этом каждый следующий город должен начинаться на букву, которой заканчивается предыдущий город. Запрещено повторять название городов. Например, сначала была названа "Москва" - заканчивается на "а", следует назвать другой город, у которого в названии первая буква "а". Это может быть "Архангельск". Следующий город должен начинаться на "к" и т.д. Дан список городов России и их двухзначные номера: 01 КЕМЕРОВО Для каждой цепочки городов можно записать последовательно их номера без пробелов, в результате получится число. Какое максимальное число можно получить для данного набора городов?
Задачу решили:
1
всего попыток:
4
На полке размещены музыкальные диски из n коробок, 1<=n<=100. Диски из одной коробки одной тематики и пронумерованы по порядку, дисков в коробке не более 10. За 1 шаг можно переставить один диск в любое место на полке.
Задачу решили:
40
всего попыток:
55
Римских цифр не много, вот они: 1 - I, 5 - V, 10 - X, 50 - L, 100 - C, 500 - D, 1000 - M. Однако в древности единообразия в записи чисел не было. Например, для обозначения числа четыре писали то IV, то IIII (такую форму записи до сих пор иногда используют на циферблатах часов). А над 49-ым входом в римский Колизей можно увидеть номер XXXXVIIII, а не XLIX, как принято писать сейчас. Современные правила римской записи стали преобладающими уже в новое время. Они обеспечивают "экономную" запись, минимизируя число использованных знаков. Запишем римскими цифрами несколько простых чисел: II, III, V, VII, XI, XIII, XVII При этом мы использовали знак X три раза. А сколько потребуется знаков X, чтобы записать современным "экономным" способом все простые числа от II до MMMCMXCIX?
Задачу решили:
14
всего попыток:
19
Наименьшее число, представимое в виде суммы квадрата, куба и четвертой степени простых чисел - это 28: 28 = 22 + 23 + 24 С числом 17367 это можно проделать тремя способами: 17367 = 232 + 133 + 114 = 1132 + 133 + 74 = 1312 + 53 + 34 17367 - это наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел тремя способами. Определите наименьшее число, которое можно представить в виде суммы квадрата, куба и четвертой степени простых чисел пятью способами.
Задачу решили:
12
всего попыток:
17
Будем называть k-разложимым натуральное число N, которое можно представить в виде суммы и произведения одного и того же набора из k чисел {a1, a2, ... , ak} : N = a1 + a2 + ... + ak = a1 × a2 × ... × ak. Например, число 6 является 3-разложимым: 6 = 1 + 2 + 3 = 1 × 2 × 3. Для каждого k найдем наименьшее k-разложимое число, и выпишем такие числа для k = 2, 3, 4, 5 и 6: k=2: 4 = 2 × 2 = 2 + 2 Мы видим, что для 2≤k≤6 наибольшее из наименьших k-разложимых чисел равно 12. Найти наибольшее из наименьших k-разложимых чисел для 2≤k≤12000.
Задачу решили:
21
всего попыток:
47
Легко показать, что не существует равносторонних треугольников, у которых и длина сторон, и площадь выражались бы целыми числами. Однако площадь "почти равностороннего" треугольника со сторонами 5-5-6 равна целому числу 12. Мы будем называть "почти равносторонними" такие треугольники, у которых длины любых двух сторон не отличаются больше, чем на единицу. Найдите суммарную площадь всех почти равносторонних треугольников, для каждого из которых площадь выражается целым числом, а длины сторон - целые числа, не превышающие одного миллиарда (1 000 000 000).
Задачу решили:
0
всего попыток:
3
Клетки шахматной доски размером 8x8 обозначены стандартным способом по горизонтали буквами "a-h" и по вертикали цифрами "1-8". У вас имеются по 8 комплектов каждой буквы и каждой цифры и вы размещаете на каждой клетке одну букву и одну цифру, таким образом, чтобы полученный номер не совпадал со стандартным (должна отличаться или буква или цифра). Найдите количество таких размещений и введите в ответ сумму цифр полученного числа.
Задачу решили:
26
всего попыток:
31
Собственным делителем числа называется всякий его делитель, отличный от самого числа. Например, для числа 28 собственные делители - это 1, 2, 4, 7 и 14. Их сумма равна исходному числу 28, и за это его называют совершенным. Сумма собственных делителей числа 220 равна 284, а сумма собственных делителей 284 равна 220. Подобные пары чисел называют дружественными. Они образуют контур из двух элементов. Есть контуры и подлиннее. Например, начав с числа 12496, мы можем построить контур из пяти элементов: 12496 → 14288 → 15472 → 14536 → 14264 (→ 12496 → ...) Построенную таким образом последовательность, начинающуюся и заканчивающуюся одним и тем же числом, мы будем называть дружественным контуром. Найдите сумму элементов самого длинного дружественного контура, состоящего из чисел, не превышающих 1 000 000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|