Лента событий:
solomon
добавил решение задачи
"Дырявый квадрат - 5"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
8
всего попыток:
24
При игре в дартс участники метают три коротких дротика в мишень, разделенную на двадцать равных секторов, которые пронумерованы числами от 1 до 20. Количество заработанных очков зависит от того, куда дротик воткнулся. Попадание дротика за пределами внешнего красно-зеленого кольца не приносит очков. Попадание дротика в черный или желтый сектор внутри этого кольца приносит очки в соответствии с номером сектора. Внешнее красно-зеленое кольцо означает удвоение числа сектора, а внутреннее - утроение. Два концентрических круга в центре мишени образуют "яблочко". Наружный зеленый круг дает 25 очков, а внутренний красный - 50. Он считается двойным (25x2=50). Существует несколько вариантов игры. В самом распространенном из них игроки в начале игры имеют 301 или 501 очко, а затем последовательно вычитают заработанные очки. Выигрывает тот, у кого останется ровно ноль очков. Однако победа засчитывается только в том случае, если последний бросок, сводящий число очков к нулю, был "двойным", то есть попал во внешнее красно-зеленое кольцо или в красное "яблочко". В противном случае, а также когда после серии из трех бросков получается отрицательная сумма очков или единица, вся серия не засчитывается, и счет остается прежним. Положение, при котором участник может завершить игру, называют "чекаут" (англ. checkout). Максимальный чекаут возможен при 170 очках: T20 T20 D25 (два попадания с утроением в сектор 20 и одно попадание в красное яблочко). Есть ровно 11 способов окончить игру при шести очках: D3 Обратите внимание, что серии D1 D2 и D2 D1 считаются различными, поскольку последние броски с удвоением у них различны. Однако комбинации S1 T1 D1 и T1 S1 D1 считаются одинаковыми. Кроме того, мы не учитываем промахи. D3 считается тем же исходом, что и 0 D3 или 0 0 D3.
Задачу решили:
44
всего попыток:
151
Найдите количество натуральных чисел представимых в виде nm, (n и m - натуральные, 1<n<100, 1<m<10) заканчивающихся на цифру, которая чаще всего встречается последней в десятичной записи.
Задачу решили:
18
всего попыток:
91
Найти минимальное натуральное n=a+b+c (натуральные a, b, c < 1000), для которого уравнения вида ax2+bx+c=0 имеют наибольшее количество целых решений (кратные решения считаются как одно).
Задачу решили:
62
всего попыток:
157
В ряд последовательно записаны квадраты всех чисел от 1 до 1000: 14916253649... Далее выбираются комбинации из двух последовательных цифр, например, 14, 49 или 16. Определить сколько таких чисел являются четными.
Задачу решили:
28
всего попыток:
56
Матрицу {aij} 10 на 10 заполнили двузначными числами следующим образом: a11=31, a12=41, a13=59,... В качестве значений элементов матрицы выбираются две очередные цифры десятичной записи числа π=3,1415926... Сначала заполняется первая строка, затем вторая и т.д. Найдите определитель такой матрицы.
Задачу решили:
13
всего попыток:
90
У вас есть много карточек с римскими цифрами. Выложите последовательно все числа от 1 до 3999. Какое количество карточек вам потребуется?
Задачу решили:
18
всего попыток:
44
Найдите количество 32-значных чисел в системе счисления с основанием 17, таких что их запись не содержит двух подряд идущих нулей.
Задачу решили:
13
всего попыток:
34
На плоскости нарисована пятиконечная звезда с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?
Задачу решили:
16
всего попыток:
41
В пространстве размещен куб с вершинами в точках (0,0,0), (0,0,1000), (0,1000,0) и (1000,0,0). В куб вписаны 8 шаров диаметром 500. Сколько точек с целочисленными координатами лежат внутри куба, но не попадают внутрь шаров?
Задачу решили:
24
всего попыток:
68
На шахматную доску ставится один ферзь и кони. Какое максимальное количество коней можно поставить на доску, чтобы ни одна фигура не оказалась под боем?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|