img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил решение задачи "Дырявый квадрат - 5" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 8
всего попыток: 24
Задача опубликована: 21.09.09 08:30
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

При игре в дартс участники метают три коротких дротика в мишень, разделенную на двадцать равных секторов, которые пронумерованы числами от 1 до 20.

Количество заработанных очков зависит от того, куда дротик воткнулся. Попадание дротика за пределами внешнего красно-зеленого кольца  не приносит очков. Попадание дротика в черный или желтый сектор внутри этого кольца приносит очки в соответствии с номером сектора. Внешнее красно-зеленое кольцо означает удвоение числа сектора, а внутреннее  - утроение. Два концентрических круга в центре мишени образуют "яблочко". Наружный зеленый круг дает 25 очков, а внутренний красный - 50. Он считается двойным (25x2=50).

Существует несколько вариантов игры. В самом распространенном из них игроки в начале игры имеют 301 или 501 очко, а затем последовательно вычитают заработанные очки. Выигрывает тот, у кого останется ровно ноль очков. Однако победа засчитывается только в том случае, если последний бросок, сводящий число очков к нулю, был "двойным", то есть попал во внешнее красно-зеленое кольцо или в красное "яблочко". В противном случае, а также когда после серии из трех бросков получается отрицательная сумма очков или единица, вся серия не засчитывается, и счет остается прежним.

Положение, при котором участник может завершить игру, называют "чекаут" (англ. checkout). Максимальный чекаут возможен при 170 очках: T20 T20 D25 (два попадания с утроением в сектор 20 и одно попадание в красное яблочко).

Есть ровно 11 способов окончить игру при шести очках:

D3   
D1  D2   
S2  D2   
D2  D1   
S4  D1   
S1  S1  D2
S1  T1  D1
S1  S3  D1
D1  D1  D1
D1  S2  D1
S2  S2  D1

Обратите внимание, что серии D1 D2 и D2 D1 считаются различными, поскольку последние броски с удвоением у них различны. Однако комбинации S1 T1 D1 и T1 S1 D1 считаются  одинаковыми. Кроме того, мы не учитываем промахи. D3 считается тем же исходом, что и 0 D3 или 0 0 D3.
Всего существует 42336 различных способов завершить игру. При оставшихся 6 очках можно завершить игру 11 способами, при 8 - 22 способами.
А при каком количестве очков можно завершить игру наибольшим числом способов?

Задачу решили: 44
всего попыток: 151
Задача опубликована: 26.09.09 12:59
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите количество натуральных чисел представимых в виде nm, (n и m - натуральные, 1<n<100, 1<m<10) заканчивающихся на цифру, которая чаще всего встречается последней в десятичной записи.

Задачу решили: 18
всего попыток: 91
Задача опубликована: 02.10.09 10:04
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Найти минимальное натуральное n=a+b+c (натуральные a, b, c < 1000), для которого уравнения вида ax2+bx+c=0 имеют наибольшее количество целых решений (кратные решения считаются как одно).

Задачу решили: 62
всего попыток: 157
Задача опубликована: 09.10.09 07:35
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Mikha (Михаил Григорьев)

В ряд последовательно записаны квадраты всех чисел от 1 до 1000:

14916253649...

Далее выбираются комбинации из двух последовательных цифр, например, 14, 49 или 16. Определить сколько таких чисел являются четными.

Задачу решили: 28
всего попыток: 56
Задача опубликована: 05.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Матрицу {aij} 10 на 10 заполнили двузначными числами следующим образом: a11=31, a12=41, a13=59,... В качестве значений элементов матрицы выбираются две очередные цифры десятичной записи числа π=3,1415926... Сначала заполняется первая строка, затем вторая и т.д. Найдите определитель такой матрицы.

Задачу решили: 13
всего попыток: 90
Задача опубликована: 09.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

У вас есть много карточек с римскими цифрами. Выложите последовательно все числа от 1 до 3999.  Какое количество карточек вам потребуется?

Задачу решили: 18
всего попыток: 44
Задача опубликована: 12.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество 32-значных чисел в системе счисления с основанием 17, таких что их запись не содержит двух подряд идущих нулей.

Задачу решили: 13
всего попыток: 34
Задача опубликована: 19.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

На плоскости нарисована пятиконечная звезда  с центром в начале координат и одной вершиной в точке с координатами (100,0). Сколько точек с целочисленными координатами находится внутри звезды?

Задачу решили: 16
всего попыток: 41
Задача опубликована: 23.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В пространстве размещен куб с вершинами в точках (0,0,0), (0,0,1000), (0,1000,0) и (1000,0,0). В куб вписаны 8 шаров диаметром 500.  Сколько точек с целочисленными координатами лежат внутри куба, но не попадают внутрь шаров?

Задачу решили: 24
всего попыток: 68
Задача опубликована: 30.11.09 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

На шахматную доску ставится один ферзь и кони. Какое максимальное количество коней можно поставить на доску, чтобы ни одна фигура не оказалась под боем?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.