img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил решение задачи "Дырявый квадрат - 5" (Математика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 34
всего попыток: 63
Задача опубликована: 26.04.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Oleg (Олег Пилипёнок)

Первые 10 миллионов простых чисел записаны последовательно в ряд. Какое количество нулей находится на четных местах?

Задачу решили: 33
всего попыток: 48
Задача опубликована: 31.05.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Определим для натурального числа n функцию S(n) равной сумме цифр в его десятичной записи. Найдите наименьшее M, такое, что среди простых чисел меньших 1000000, количество чисел для которых S(n)=M максимально.

Задачу решили: 0
всего попыток: 0
Задача опубликована: 14.06.10 08:00
Прислал: admin img
Источник: Московская областная олимпиада школьников
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Федя хочет доказать Володе, что его способ сложения не обладает свойством ассоциативности. В частности, Федя утверждает, что существуют три числа, для которых важен порядок, в котором их складывают (при этом разрешается складывать числа в любом порядке, например можно сначала сложить первое число и последнее, а затем прибавить к ним среднее). Федя привел даже пример трех таких чисел.
Сколько существует троек чисел a, b, c, таких, что a < b < c < 1000000 и a+(b+c) < (a+b)+c.

Задачу решили: 51
всего попыток: 81
Задача опубликована: 05.07.10 08:00
Прислал: admin img
Источник: Санкт-Петербургский государственный университ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Vkorsukov

Была исходная последовательность символов:
AAABBABB

В конец этой последовательности дописали ее копию, но развернутую зеркально (символы взяли в обратном порядке). Получилась строка:
AAABBABBBBABBAAA

Эту операцию повторили еще три раза, каждый раз дописывая в зеркальном отображении всю последовательность, полученную на предыдущем шаге. В результате получилась последовательность из 128 символов. В получившейся последовательности заменили все тройки идущих подряд символов BAB на ABA. Эту операцию повторяли до тех пор, пока тройки идущих подряд символов BAB не перестали встречаться в последовательности. Сколько букв B осталось в результирующей последовательности?

Задачу решили: 31
всего попыток: 49
Задача опубликована: 19.07.10 08:00
Прислал: admin img
Источник: Всеукраинская олимпиада по информатике
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: aram_gyumri (Арам Оганесян)

Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.

+ 0
+ЗАДАЧА 305. Блоха-знаток (Игорь Чевдарь)
  
Задачу решили: 0
всего попыток: 1
Задача опубликована: 09.08.10 08:00
Прислал: admin img
Источник: Открытый чемпионат Урала по спортивному прогр...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Блоха запрыгнула на круглый стол для игры в "Что? Где? Когда?" незадолго до начала очередной игры. На секторах стола уже были разложены конверты с вопросами. Блоха решила заранее прочитать все вопросы, чтобы у нее было больше времени подумать над ответами.

Круглый игровой стол поделен на 109 секторов, занумерованных по часовой стрелке числами от 1 до 109. Блоха запрыгнула на первый сектор. С него она может либо перебежать на соседний, либо перепрыгнуть через 2 сектора (например, если стол делится на 12 секторов, то с сектора номер 1 блоха может за одно действие попасть на сектора с номерами 2, 4, 10 и 12). Блоха хочет побывать на каждом секторе ровно 1 раз и вернуться обратно на первый сектор, откуда она спрыгнет и убежит думать над вопросами. Определите, сколькими способами она сможет совершить свое путешествие. Выведите в качестве ответа количество способов по модулю 109+9.

Задачу решили: 4
всего попыток: 6
Задача опубликована: 16.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Рассмотрим строку, состоящую из последовательных первых 109 знаков числа π после запятой. Найти минимальное число не входящее в качестве подстроки в эту строку.

Задачу решили: 0
всего попыток: 1
Задача опубликована: 23.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти наименьшее натуральное число x такое, что существует целое y>x и (x+i)/(y+j) являются сократимыми дробями для всех i,j = 0,1,2,...,9.

Задачу решили: 54
всего попыток: 91
Задача опубликована: 30.08.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: bbny

Найти миниальное n такое, что: 1+1/2+1/3+1/4+...+1/n > 16

Задачу решили: 29
всего попыток: 58
Задача опубликована: 20.09.10 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Anton_Lunyov

13-е число месяца может быть любым днем недели с понедельника по воскресенье, казалось бы с одинаковой вероятностью, примерно равной 1/7=0,142857... (в случае равномерного распределения). Найдите реальную долю попадания 13-го числа на пятницу с 2000-го года по 3000-й год включительно (по григорианскому календарю).

(В ответе укажите первые шесть цифр после запятой, без округления. Ноль и запятую не нужно вводить.)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.