Лента событий:
Mika решил задачу "Медиана и биссектриса в треугольнике" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
61
всего попыток:
109
Найти количество всех делителей числа 22009, в десятичной записи которых отсутствует цифра ноль.
Задачу решили:
126
всего попыток:
135
Некоторые числа обладают интересным свойством: 1233 = 122 + 332, 990100 = 9902 + 1002. Найти наибольшее 8-значное число ABCDEFGH такое, что ABCDEFGH=ABCD2+EFGH2.
Задачу решили:
40
всего попыток:
73
Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям: a1 делится на 1; a1a2 делится на 2; a1a2a3 делится на 3; ... a1a2a3...a24 делится на 24.
Задачу решили:
20
всего попыток:
90
Необходимо разложить 8290 кафельных плиток размера 1x1 на пол размером 68x122, так чтобы в каждой строке и в каждом столбце было четное количество плиток, при этом на одно место можно положить не более одной плитки. Сколько существует способов такой укладки?
Задачу решили:
44
всего попыток:
65
Известно, что если квадратный корень из целого числа не является целым числом, то он не будет и рациональным. Поэтому соответствующая ему бесконечная десятичная дробь не будет периодической. Рассмотрим десятичное разложение квадратного корня из двух: Найдите сумму тысячи первых десятичных знаков корня квадратного из трех.
Задачу решили:
47
всего попыток:
150
На поле размером 1000*1000 клеток в разных клетках расположены 10 вирусов. За каждый ход вирус заражает 4 соседние с ним клетки (слева, справа, сверху и снизу).
Задачу решили:
54
всего попыток:
91
Механизм кодиpовки для фоpмата MIME64 (Multitask Internet Mail Extensions) следующий: В результате кодировки получилась фраза: UHJvamVjdC8vRGlvZmFudCtpbnR1aXQrb3NwLy9ydQ0K. Введите текст, который был закодирован.
Задачу решили:
25
всего попыток:
99
Пусть S < 109. Найти наибольшее значение S, для которого существует максимальное количество прямоугольников с целочисленными сторонами и площадью равной S.
Задачу решили:
17
всего попыток:
23
Паук S сидит в углу комнаты, имеющей форму прямоугольного параллелепипеда и размеры 6×5×3. Муха F сидит в противоположном углу. Чтобы добраться до мухи, паук может ползти по стенам, полу или потолку комнаты. При этом он выбирает кратчайший возможный путь. В данном случае длина кратчайшего пути оказалась равной 10: Однако, не для всякой комнаты длина кратчайшего пути будет выражаться целым числом. Рассмотрим все комнаты, у которых длина, ширина и высота - целые числа, не превышающие M. Оказывается что для M=100 найдется ровно 2060 различных комнат, для которых длина кратчайшего пути будет целой, и это минимальное число, при котором количество решений превышает 2000, поскольку при M=99 будет только 1975 решений. Найти наименьшее число M, при котором число решений будет больше 100 000 000.
Задачу решили:
47
всего попыток:
115
Номера кредитной карты состоят из 16 цифр (все цифры не могут быть нулями одновременнно). Номер является счастливым, если сумма первых восьми цифр равна сумме последних восьми. Сколько всего таких счастливых номеров?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|