img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Информатика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 73
Задача опубликована: 03.06.09 11:19
Прислал: admin img
Источник: в ред. А.Лунева
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: perfect_result... (Александр Опарин)

Найти минимальное 24-значное число a1a2a3...a24, которое удовлетворяет следующим условиям:

a1 делится на 1;

a1a2 делится на 2;

a1a2a3 делится на 3;

...

a1a2a3...a24 делится на 24.

Задачу решили: 57
всего попыток: 106
Задача опубликована: 29.07.09 11:30
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Gh0stik

Чему равна сумма цифр находящихся на местах с простыми номерами в десятичной записи числа 210000?

Задачу решили: 3
всего попыток: 9
Задача опубликована: 18.02.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100

Возьмем вещественное число x.
Наилучшим его приближением со знаменателем, не превышающим d, назовем несократимую дробь r/s (s≤d), такую, что у любого рационального числа, лежащего ближе к x, чем r/s, знаменатель будет больше, чем d:
|p/q-x| < |r/s-x| => q>d.
Например, наилучшим приближением числа √13 со знаменателем, не превышающим 20, будет дробь 18/5. А наилучшим приближением того же числа, но со знаменателем, не превышающим 30, будет 101/28.
Найдите сумму знаменателей наилучших приближений √n со знаменателем, не большим, чем 1012, для всех простых чисел n, не превышающих 100000.

Задачу решили: 9
всего попыток: 16
Задача опубликована: 18.04.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для некоторых натуральных чисел k можно подобрать такое вещественное число t, чтобы выполнялось равенство
4t = 2t + k,
а числа 4t и 2t были целыми.
Наименьшее такое k равно двум:
41 = 21 + 2,
а следующее равно шести:
41,5849625... = 21,5849625... + 6.

Как мы видим, для некоторых k, например для k=2, t оказывается целым, а для других – нет.
Обозначим через P(m) долю таких k ≤ m, для которых  t – целое. Например, P(6) = 1/2. Ниже приведено несколько значений P(m):

   P(5) = 1/1
   P(10) = 1/2
   P(15) = 2/3
   P(20) = 1/2
   P(25) = 1/2
   P(30) = 2/5
   ...
   P(180) = 1/4
   P(185) = 3/13

Найдите сумму всех m, для которых P(m)=1/7777.

Задачу решили: 5
всего попыток: 8
Задача опубликована: 11.07.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Функция бланманже определена на промежутке [0, 1] следующим образом:
,
Где s(x) – расстояние между x и ближайшим к нему целым числом.
График функции бланманже представлен на рисунке. Область под кривой, закрашена розовым. Ее площадь равна ½.

Построим теперь круг C с центром в точке (3/8, 1/2) и радиусом 3/8.
Найдите площадь той части круга C, которая лежит под графиком  функции бланманже.
Результат умножьте на 107 и округлите до целого.

Задачу решили: 5
всего попыток: 5
Задача опубликована: 12.09.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

Для целого n≥4 определим нижний простой квадратный корень из n как наибольшее простое число, не превышающее √n. Обозначим это число через lps(n).
Аналогично, обозначим через ups(n) верхний простой квадратный корень из n, т.е. наименьшее простое число, большее или раное √n.
Например, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37.
Назовем число n≥4 полуделимым, если оно делится на lps(n) или на  ups(n), но не кратно обоим этим числам одновременно. Первые три полуделимых числа – это 8, 10 и 12. Число 15 не является полуделимым, поскольку  оно кратно и lps(15)=3, и ups(15)=5. Сумма первых трех полуделимых чисел равна 30. Сумма первых 92 полуделимых чисел равна 34825.
Найдите сумму первых 3711717 полуделимых чисел.

Задачу решили: 10
всего попыток: 16
Задача опубликована: 19.09.11 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg

 

Решите уравнение относительно r:

Результат округлите до целого.

 

 

Задачу решили: 8
всего попыток: 16
Задача опубликована: 31.10.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Дроби, у которых числитель меньше знаменателя, называют правильными. Для каждого знаменателя d существует d-1 правильная дробь. Например, для d=15 это

1/15 , 2/15 , 3/15 , 4/15 , 5/15 , 6/15 , 7/15 , 8/15 , 9/15 , 10/15, 11/15, 12/15, 13/15, 14/15.

Из 14 правильных дробей со знаменателем 15 лишь 8 оказываются несократимыми. Назовем коэффициентом несократимости R(d) знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d. Например, R(15)= 8/14 =4/7. Заметим, что d=15 – это наименьший нечетный знаменатель, для которого R(d)<2/3.

Найдите наименьший нечетный знаменатель d, для которого R(d)< 19945/60961.

Задачу решили: 3
всего попыток: 5
Задача опубликована: 07.11.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Назовем коэффициентом несократимости знаменателя d отношение количества несократимых правильных дробей со знаменателем d к общему количеству правильных дробей со знаменателем d, например R(12) = 4⁄11.
Можно показать, что коэффициент несократимости

R(d)= φ(d)/(d – 1), где φ – функция Эйлера.

Теперь определим коэффициент сократимости C(d):

C(d)= (d-φ(d))/(d – 1 )
Например, для простых чисел p

C(p)=1/(p-1)

Существует ровно 2 составных d<100, для которых C(d) является дробью с числителем, равным 1: это 15 и 85.
Найдите количество составных d, не превышающих 2×1011, для которых C(d) – дробь с числителем, равным единице.

Задачу решили: 5
всего попыток: 7
Задача опубликована: 01.12.11 08:00
Прислал: admin img
Источник: Проект "Эйлер" (http://projecteuler.net)
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Тройку натуральных чисел (a,b,c) будем называть тройкой Кардано, если она удовлетворяет условию:

 

Например, тройка (2,1,5) является тройкой Кардано.
Найдите, сколько существует троек Кардано при a, b и  c меньших, чем 30 000 000.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.