Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
45
Найдите минимальное n при котором в записи 3n числа имеется 7 подряд идущих нулей.
Задачу решили:
9
всего попыток:
27
Сколько существует различных расстановок 8 ферзей на шахматной доске, таких, что ровно 2 ферзя бьют друг друга?
Задачу решили:
17
всего попыток:
27
Матрица размером 100 на 100 элементов заполняется таким образом: в позиции с координатами (i,j) размещается цифра, находящаяся на i*j месте после запятой в записи числа π, если эта цифра четная, то она записывается с положительным знаком, если нет - с отрицательным. Рассмотрим "внутренние" матрицы 10 на 10, состоящие из элементов: am,n, am+1,n,...,am+9,n, Суммой матрицы назовем сумму ее элементов. Найдите максимальное значение суммы среди всех "внутренних" матриц.
Задачу решили:
1
всего попыток:
2
Найдите количество различных троек натуральных чисел x < y < z < 107 таких, что xn+yn=zm (n и m - натуральные, n>2, m>1).
Задачу решили:
8
всего попыток:
29
Рассмотрим различные тройки взаимно простых натуральных чисел x < y < z < 107 таких, что x2+y2=z2. Найдите количество натуральных чисел p < 107, которые не входят ни в одну такую тройку.
Задачу решили:
25
всего попыток:
58
В ряду 2, 3, 4, 5, 6, 8, 9, 10, 12, 15,... представлены числа, которые имеют простые делители только числа 2, 3 и 5. Продолжите этот ряд и найдите число в этом ряду, которое находится на месте с номером 10000.
Задачу решили:
9
всего попыток:
26
Рассмотрим функцию ([] означает округление вниз) и последовательность u(n), заданную следующим образом: u(0) = 109 Найдите u(1018).
Задачу решили:
6
всего попыток:
6
Стороны правильного треугольника ABC представляют собой зеркала, обращенные отражающей поверхностью вовнутрь. В вершинах треугольника расположены бесконечно малые щели, через которые может пройти лазерный луч. Очевидно, что есть только одна траектория, по которой луч входит и выходит через вершину C, отразившись лишь однажды.
Задачу решили:
6
всего попыток:
8
Рассмотрим движение робота. Его траектория представляет собой гладкую кривую, составленную из 72-градусных дуг определенного радиуса. На каждом шаге робот может двигаться по часовой стрелке или против, но не может поворачиваться на месте. На рисунке показан замкнутый путь робота, состоящий из 25 дуг и начинающийся в направлении "на север", которое обозначено стрелкой. Всего замкнутых траекторий такой длины, начинающихся в северном направлении можно насчитать 70932. Сколько существует замкнутых траекторий, состоящих не более чем из 70 дуг, и начинающихся в северном направлении. (По одной дуге робот может проходить несколько раз).
Задачу решили:
5
всего попыток:
6
k-значное натуральное число называется сбалансированным, если сумма его первых [k/2] цифр его равна сумме последних [k/2] цифр. Здесь x обозначает округление вверх, например, [π] = 4 и [5] = 5.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|