Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
173
всего попыток:
433
Рассмотрим такой алгоритм: Проблема Коллаца (Collatz problem, кстати, до сих пор нерешенная) заключается в том, что начиная с любого n и выполняя указанные операции можно достигнуть 1. Для какого начального числа n < 2000000 необходимо совершить максимальное количество операций чтобы достичь 1?
Задачу решили:
146
всего попыток:
262
Дан треугольник: 75 Найти максимальное произведение цепочки 5 соседних последовательных чисел, находящихся на разных уровнях треугольника. Цепочка строится так: выбирается начальное число, следующее число должно быть на строке ниже и быть ближайшим соседом слева или справа, и так далее.
Задачу решили:
108
всего попыток:
288
Пусть a и b натуральные числа и 2 < a < 200, 1 < b < 100. Сколько различных чисел может быть получено по формуле ab?
Задачу решили:
290
всего попыток:
1287
Чему равно наименьшее натуральное число меньшее 1 миллиона, которое имеет максимальное количество различных делителей.
Задачу решили:
126
всего попыток:
135
Некоторые числа обладают интересным свойством: 1233 = 122 + 332, 990100 = 9902 + 1002. Найти наибольшее 8-значное число ABCDEFGH такое, что ABCDEFGH=ABCD2+EFGH2.
Задачу решили:
25
всего попыток:
99
Пусть S < 109. Найти наибольшее значение S, для которого существует максимальное количество прямоугольников с целочисленными сторонами и площадью равной S.
Задачу решили:
47
всего попыток:
115
Номера кредитной карты состоят из 16 цифр (все цифры не могут быть нулями одновременнно). Номер является счастливым, если сумма первых восьми цифр равна сумме последних восьми. Сколько всего таких счастливых номеров?
Задачу решили:
32
всего попыток:
102
В Думу одного государства избираются 450 депутатов по партийным спискам. Партия, набравшая максимум голосов (такая всегда есть) получает право по своему усмотрению
Задачу решили:
133
всего попыток:
189
Полоска бумаги состоит из 2048 клеток. Полоску сгибают ровно пополам так, что правый конец наложился на левый. Затем эту процедуру продолжают до тех пор, пока не останется одна клетка. На какое место от начала полоски нужно поставить отметку, чтобы она оказалась на самом верху?
Задачу решили:
61
всего попыток:
115
В одной стране, когда население достигло 1 миллиарда, правитель выдал всем жителям порядковые номера от 1 и до 109. В этой стране счастливым считается число 888, поэтому сначала осчастливили тех, у кого номер оказался кратным 888. Затем счастливчиков упорядочили в порядке возрастания номеров и отобрали тех, кто оказался на местах кратных 888. Эту процедуру продолжали до тех пор, пока участников стало меньше 888. Их и объявили суперсчастливчиками. Чему равна сумма изначальных номеров суперсчастливчиков?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|