Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
37
Даны первые 1000 простых чисел. Найдите минимальное натуральное число, превосходящее самое большое из них, которое не может быть представлено суммой никаких из этих простых чисел. В сумму каждое число может входить не более одного раза.
Задачу решили:
33
всего попыток:
57
Шахматный конь ходит буквой "Г" - сначала в одну сторону на 2 клетки, а потом влево или вправо на одну. Новая шахматная фигура баран ходит как и конь, только сначала он ходит на 3 клетки. Баран начал ходить с поля a1. Какое максимальное количество клеток он может посетить (включая первую) и при этом не наступая ни на одну из клеток дважды.
Задачу решили:
5
всего попыток:
5
Даны натуральные числа a, b, c, d, e, f < 100000, a<b. Найти количество различных таких шестерок, удовлетворяющих условию: (a*b+c)/d-e=f.
Задачу решили:
11
всего попыток:
20
Если из формулировки этой задачи удалять буквы, то могут оставаться буквы, которые последовательно составляют названия цифр: ноль, один, два, три, четыре, пять, шесть, семь, восемь, девять. За каждый ход можно оставить буквы только для одной цифры. Сколько таких ходов можно сделать?
Задачу решили:
5
всего попыток:
18
В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, для которого можно сделать наибольшее количество таких ходов.
Задачу решили:
19
всего попыток:
66
На шахматной доске стоят 4 коня на разных клетках одного цвета. За один ход все кони одновременно перемещаются на другую клетку, при этом на одной клетке могут находиться несколько коней. Необходимо собрать всех коней на одной клетке за минимальное число ходов. Какое наибольшее число ходов придется сделать при наихудшем изначальным расположении коней?
Задачу решили:
25
всего попыток:
64
В записи ***** вместо цифр в шестнадцатиричной системе счисления стоят звездочки, при этом первое слагаемое меньше второго. Какое количество вариантов решений существует?
Задачу решили:
15
всего попыток:
22
В каждой ячейке квадрата размера 4 на 4 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми четырехзначными числами. Сколько различных простых квадратов существует?
Задачу решили:
6
всего попыток:
14
Начальная конфигурация головоломки Рубика "магические квадратики" выглядит так:
Разрешены такие преобразования:
Конфигурацией головоломки называется любое положение квадратиков, которое возможно получить при помощи указанных преобразований. За какое минимальное количество ходов можно гарантированно преобразовать произвольную конфигурацию в начальную.
Задачу решили:
0
всего попыток:
6
В десятизначном числе N за один ход можно удалить произвольное количество цифр так, что оставшиеся цифры последовательно представляют запись простого числа (пробелы между цифрами автоматически удаляются). Найти такое минимальное N, из которого такими ходами можно получить наибольшее количество различных простых чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|