Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
33
В каждой ячейке квадрата размера 5 на 5 записана цифра. Квадрат будем считать простым, если каждая строка (слева направо), каждый столбец (сверху вниз) и обе диагонали (слева направо) являются простыми пятизначными числами. В левом верхнем углу находится цифра 3, а сумма цифр каждого простого числа равна 23. Сколько таких различных простых квадратов существует?
Задачу решили:
33
всего попыток:
48
Определим для натурального числа n функцию S(n) равной сумме цифр в его десятичной записи. Найдите наименьшее M, такое, что среди простых чисел меньших 1000000, количество чисел для которых S(n)=M максимально.
Задачу решили:
4
всего попыток:
12
На координатной сетке на плоскости отмечены точки Pij, где i и j - простые числа и 1≤i,j≤1000. Точки Pij рассматриваются как вершины треугольников. Сколько треугольников являются равнобедренными?
Задачу решили:
0
всего попыток:
0
Володя написал программу, которая складывает в столбик два числа. К сожалению, он не разобрался, как правильно переносить единицу из одного разряда в следующий. Поэтому программа стала выполняться следующим образом. Сначала она складывает последние цифры обоих чисел и записывает результат, как в случае, если он однозначный, так и в случае, если он двузначный. Затем программа складывает предпоследние цифры обоих чисел и результат сложения приписывает слева к результату предыдущего сложения. Далее процесс повторяется для всех разрядов. Если в одном числе цифр меньше, чем в другом, то программа размещает нули в соответствующих разрядах более короткого числа.
Задачу решили:
51
всего попыток:
81
Была исходная последовательность символов: В конец этой последовательности дописали ее копию, но развернутую зеркально (символы взяли в обратном порядке). Получилась строка: Эту операцию повторили еще три раза, каждый раз дописывая в зеркальном отображении всю последовательность, полученную на предыдущем шаге. В результате получилась последовательность из 128 символов. В получившейся последовательности заменили все тройки идущих подряд символов BAB на ABA. Эту операцию повторяли до тех пор, пока тройки идущих подряд символов BAB не перестали встречаться в последовательности. Сколько букв B осталось в результирующей последовательности?
Задачу решили:
31
всего попыток:
49
Какое минимальное количество спичек необходимо для того, чтобы выложить на плоскости 1111111 квадратов со стороной в одну спичку? Спички нельзя ломать и класть друг на друга. Вершинами квадратов должны быть точки, где сходятся концы спичек, а сторонами - сами спички.
Задачу решили:
5
всего попыток:
22
Набор домино состоит из прямоугольных костяшек, каждая из которых разделена на две половинки линией, параллельной более короткой стороне. На каждой из половинок нарисованы точки, количество которых соответствует числу от 0 до 6 включительно. На костяшках полного набора домино обозначены все возможные различные пары чисел. Все костяшки выкладывают в "круговые" цепочки, соединяя пары костяшек короткими сторонами, если количества точек на соседних с местом соединения половинках костяшек равны, и при этом левая половинка начальной и правая половинка последней костяшки имеют одинаковое количество точек и поэтому цепочка "закругляется". Две цепочки будем считать различными, если нельзя получить одну из другой при помощи поворота или зеркального отображения. Сколько существует различных "круговых" цепочек состоящих из всех костяшек?
Задачу решили:
0
всего попыток:
1
Блоха запрыгнула на круглый стол для игры в "Что? Где? Когда?" незадолго до начала очередной игры. На секторах стола уже были разложены конверты с вопросами. Блоха решила заранее прочитать все вопросы, чтобы у нее было больше времени подумать над ответами. Круглый игровой стол поделен на 109 секторов, занумерованных по часовой стрелке числами от 1 до 109. Блоха запрыгнула на первый сектор. С него она может либо перебежать на соседний, либо перепрыгнуть через 2 сектора (например, если стол делится на 12 секторов, то с сектора номер 1 блоха может за одно действие попасть на сектора с номерами 2, 4, 10 и 12). Блоха хочет побывать на каждом секторе ровно 1 раз и вернуться обратно на первый сектор, откуда она спрыгнет и убежит думать над вопросами. Определите, сколькими способами она сможет совершить свое путешествие. Выведите в качестве ответа количество способов по модулю 109+9.
Задачу решили:
4
всего попыток:
6
Рассмотрим строку, состоящую из последовательных первых 109 знаков числа π после запятой. Найти минимальное число не входящее в качестве подстроки в эту строку.
Задачу решили:
0
всего попыток:
1
Найти наименьшее натуральное число x такое, что существует целое y>x и (x+i)/(y+j) являются сократимыми дробями для всех i,j = 0,1,2,...,9.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|