Лента событий:
makar243 решил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
4
всего попыток:
7
Для натурального числа k обозначим через d(k) сумму его десятичных цифр. Например, d(42) = 4+2 = 6. Обозначим через S(n) количество натуральных чисел k < 10n, таких что
Можно подсчитать, что S(9) = 5464, и S(20) = 36035277144875036. Найдите остаток от деления S(2012) на 109.
Задачу решили:
3
всего попыток:
3
Рассмотрим две окружности, у которых и центры, и точки пересечения имеют целочисленные координаты. Выпуклую область, ограниченную такой парой окружностей будем называть линзой, если она не имеет внутренних точек с целочисленными координатами. Радиусы окружностей, ограничивающих линзу, назовем радиусами линзы. На рисунке ниже показаны следующие окружности: C0: x2+y2=25 Линзы, заключенные между окружностями C0 и C1 и между C0 и C2, закрашены красным. Обозначим через L(N) количество различных пар чисел (r1,r2), для которых существует линза с радиусами r1 и r2, и 0<r1≤ r2≤ N. Можно проверить, что L(10) = 30 и L(100) = 3442. Найдите Σ L(10k), где 1 ≤ k ≤ 5.
Задачу решили:
5
всего попыток:
6
Рассмотрим треугольник ABC с целочисленными сторонами. Пусть k – биссектриса угла ACB, m – касательная в точке C к окружности, описанной вокруг ABC, а прямая n проведена через точку B параллельно m. Прямые k и n пересекаются в точке E, как показано на рисунке: Сколько существует треугольников ABC со сторонами BC ≤AC ≤AB≤ 30000, для которых длина BE оказывается целым числом?
Задачу решили:
2
всего попыток:
2
На плоскости даны четыре точки с целочисленными координатами: A(a, 0), B(b, 0), C(0, c) и D(0, d), где 0 < a < b и 0 < c < d. Точка P(x,y) с целочисленными координатами выбрана на отрезке AC так, что треугольники ABP, CDP и BDP оказываются подобными.
Легко показать, что при этом a=c=x+y. Поэтому, задав подходящим образом четверку чисел (x,y,b,d), мы однозначно определим размер и положение наших треугольников. Например, четверки (x,y,b,d)=(1,1,3,4) и (x,y,b,d)=(1,1,4,3) обе удовлетворяют указанным условиям: каждая из них задает три подобных треугольника. Мы будем считать различными такие четверки, отвечающие взаимно симметричным конфигурациям. При b+d<100 существует 110 различных четверок, задающих три подобных треугольника. При b+d<100 000 существует 395662 различных четверок, задающих три подобных треугольника. Сколько существует различных четверок, задающих три подобных треугольника при b+d<100 000 000?
Задачу решили:
4
всего попыток:
5
Назовем натуральное число n мощным, если для его любого простого делителя p число n делится также на p2. Назовем натуральное число n точной степенью, если оно является степенью другого натурального числа. Назовем натуральное число n ахиллесовым, если оно мощное, но не является точной степенью. Например, числа 864 = 25•33 и 1800 = 23•32•52 — ахиллесовы. Назовем натуральное число S сильно ахиллесовым, если и S, и φ(S) — ахиллесовы. Здесь φ(S) означает функцию Эйлера. Например, число 864 — сильно ахиллесово число, поскольку φ(864) = 288 = 25•32, а число 1800 — ахиллесово, но не сильно ахиллесово, так как φ(1800) = 480 = 25•31•51. Существует 2 трехзначных и 5 четырехзначных сильно ахиллесовых чисел, а восьмизначных насчитывается 396. Найдите количество 18-значных сильно ахиллесовых чисел.
Задачу решили:
14
всего попыток:
17
Для каждого натурального числа n определим f(n) как наименьшее натуральное число, кратное n, десятичная запись которого состоит из нулей, двоек и троек. Например, f(1)=2, f(3)=3, f(4)=f(5)=f(10)=20, f(7)=203, f(9)=333, f(89)= 20203. Можно подсчитать, что f(1)/1 + f(2)/2 + f(3)/3+ ... + f(100)/100 = 19443 Найдите f(1)/1 + f(2)/2 + f(3)/3+ ... + f(10000)/10000
Задачу решили:
7
всего попыток:
11
Как известно, последовательность Фибоначчи определяется рекуррентно: f(0)=0 , f(1)=1, и f(n)=f(n-1)+f(n-2) при n>1. Найдите Σf(pi), где pi – простые числа, и 1014< pi <1014+5*106. Остаток от деления полученной суммы на 1234567891011 будет ответом к этой задаче.
Задачу решили:
3
всего попыток:
8
Рассмотрим бесконечную строку S, состоящую из записанных подряд натуральных чисел в десятичной записи: S =1234567891011121314151617181920212223242... Ясно, что десятичная запись каждого натурального числа n встретится в строке S бесконечно много раз. Будем отмечать, где именно встретились такие вхождения. Например, число 12 первый раз встретится, начиная с позиции 1 строки S, а второй раз — с позиции 14, и так далее. Обозначим через f(n) номер позиции в строке S, с которого начинается n-ое вхождение числа n. Например, f(1)=1, f(5)=81, f(11)=235, а f(7780)=111111365. Найдите ∑f(11k), где 1≤k≤6.
Задачу решили:
4
всего попыток:
13
Две лестницы длиной x и y опираются на противоположные стены коридора шириной w, как показано на рисунке. Пусть h – высота, на которой лестницы пересекаются. Нас интересуют случаи, когда все четыре числа – x,y,w и h – оказываются целыми. Например, для x = 70 и y = 119 можно найти пару подходящих целых чисел h = 30 и w = 56. При 0<x<y<200 есть ровно пять пар (x,y), для которых существуют целые h и w, а именно: (70, 119), (74, 182), (87, 105), (100, 116) и (119, 175). А сколько существует пар (x,y) при 0<x<y<1 000 000, для которых можно подобрать целые значения w и h?
Задачу решили:
3
всего попыток:
3
Как и в стандартной игре Ним, в игре Простой Ним участвуют два игрока, которые по очереди берут камни из трех куч. Каждым ходом игрок может взять из одной кучи некоторое количество камней, если это количество выражается простым числом. Проигрывает тот, кто не может сделать очередной ход. Позиция в Простом Ниме характеризуется тройкой неотрицательных целых чисел (a,b,c). Как обычно, выигрышной позицией считается такая позиция, что при правильной стратегии очередной игрок может обеспечить себе победу. Остальные позиции называются проигрышными. Можно подсчитать, что при 0≤a≤b≤c≤29 существует 651 проигрышная позиция. Найдите, сколько существует проигрышных позиций при 0≤a≤b≤c≤20000.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|