Лента событий:
anjutka__ решила задачу "Трисектрисы угла в треугольнике" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2
всего попыток:
3
Пусть ABCD – выпуклый четырехугольник с целыми сторонами, и 1 ≤ AB < BC < CD < AD. Точка O – середина диагонали BD. Будем называть четырехугольник ABCD биклинным, если длины отрезков BO, DO, AO и CO – целые числа, и AO = CO < BO = DO. Например, когда AB = 19, BC = 29, CD = 37, AD = 43, BD = 48 и AO = CO = 23, четырехугольник ABCD является биклинным. Обозначим через B(N) количество различных биклинных четырехугольников ABCD с целыми сторонами, у которых |AB|2+|BC|2+|CD|2+|AD|2 ≤ N.. Можно проверить, что B(10 000) = 48 и B(1 000 000) = 38108. Найдите B(10 000 000 000).
Задачу решили:
3
всего попыток:
7
Когда стали раздавать бесплатные участки на Луне, были установлены следующие правила. Каждому государству выделяется квадратная площадка размером 500 х 500 м. Площадка расчерчена на клетки размером 1 х 1 м, в углах которых установлено 251001 столбов. Забор должен состоять из прямолинейных отрезков, соединяющих столбы. Однако нужно учитывать, что строительство заборов в лунных условиях недешево. Конечно, богатые государства построили себе ограды длиной 2000 м, которые ограничивали площадь 250 000 м2. Но финансы княжества Фенвик расстроены, и правительство поручило вам, Главному Программисту, найти оптимальную форму забора, обеспечивающую максимальное отношение площади огороженного участка к длине забора. Прежде, чем писать программу, вы сделали предварительные расчеты. Для квадратного забора длиной 2000 м площадь участка получается равной 250 000 м2, а отношение площади к длине ограды равно 125. Если бы разрешалось строить криволинейные заборы, то для круглого участка диаметром 500 м площадь будет равна π*2502 м2, длина ограды - π*500 м, и отношение будет равно тому же числу 125. Если же отрезать от четырех углов площадки четыре равнобедренных прямоугольных треугольника с катетами 75 м, как показано на рисунке зеленым цветом, можно достичь существенного выигрыша. Действительно, площадь участка станет равной 238750 м2, длина забора будет равна 1400+300√2 м, а интересующее нас отношение составит примерно 130,87. При этом будет использовано 1700 столбов.
Найдите форму участка, обеспечивающую максимум отношения площади огороженного участка к длине ограды. В качестве ответа укажите количество использованных столбов.
Задачу решили:
6
всего попыток:
18
Космонавт пытается посадить космоплан на плоскую горизонтальную поверхность планеты X. Однако космический пират, высадившийся ранее и вооруженный пулеметом, пытается помешать ему. Начальная скорость пули составляет 740 м/с. При этом считается, что пуля опасна для космоплана, когда ее скорость превышает 100 м/с. Космонавт знает, что на планете X нет атмосферы, а ускорение свободного падения равно 9,81 м/с2. Найдите объем той области пространства, где пулемет представляет опасность для космоплана. Результат выразите в кубометрах и округлите вниз до целого.
Задачу решили:
6
всего попыток:
14
Рассмотрим вещественное число √2+√3 и рассчитаем его четные степени: (√2+√3)2 = 9.898979485566356... (√2+√3)4 = 97.98979485566356... (√2+√3)6 = 969.998969071069263... (√2+√3)8 = 9601.99989585502907... (√2+√3)10 = 95049.999989479221... (√2+√3)12 = 940897.9999989371855... (√2+√3)14 = 9313929.99999989263... (√2+√3)16 = 92198401.99999998915... Интересно, что количество девяток в дробной части полученных значений не убывает, и можно доказать, что сама дробная часть при больших n стремится к 1. В этой задаче мы рассматриваем только вещественные числа, которые можно представить в виде √p+√q , где p и q – натуральные числа, p<q, а дробная часть выражения (√p+√q)2n стремится к 1 при больших n. Пусть C(p,q,n) — количество девяток после запятой в числе (√p+√q)2n, а N(p,q) — минимальное значение n, при котором C(p,q,n)≥2013. Найдите количество чисел вида √p+√q, где 1≤p<q≤2013, для которых N(p,q)>2013.
Задачу решили:
3
всего попыток:
4
Пусть последовательность n натуральных чисел x1, x2,..., xn обладает следующими свойствами:
Существует всего 5 таких последовательностей длины 2, а именно {2,4}, {2,5}, {2,6}, {2,7} и {2,8}, 293 таких последовательности длины 5, например {2,5,11,25,55}, {2,6,14,36,88}, {2,8,22,64,181}. Пусть t(n) — количество таких последовательностей длины n. Тогда t(10) = 86195 и t(20) = 5227991891. Найдите 7 последних цифр Σt(2k) для 0 ≤ k ≤ 33.
Задачу решили:
7
всего попыток:
7
Горизонтальная полоска состоит из 2n + 1 клеток. Средняя клетка оставлена пустой, слева от нее в n клетках стоят красные фишки, а справа – синие. На рисунке показано расположение фишек для случая n = 3.
Фишки могут совершать ходы двух видов: шаги, когда фишка перемещается на соседнюю незанятую клетку, и скачки, когда одна фишка перепрыгивает через другую в следующую непосредственно за нею пустую клетку.
Обозначим через M(n) минимальное количество ходов, необходимое для того, чтобы поменять местами синие и красные фишки, так, чтобы красные фишки оказались справа от центра, а синие – слева. Легко проверить, что M(3) = 15, а 15 является треугольным числом. Построим последовательность таких n, для которых M(n) является треугольным числом. В этой последовательности ровно пять чисел, не превышающих 100, а именно 1, 3, 10, 22 и 63. Их сумма равна 99. Найдите сумму всех n, не превышающих 1017, для которых M(n) является треугольным числом.
Задачу решили:
0
всего попыток:
0
Обозначим через U(n,m) количество биномиальных коэффициентов Ckm, которые не делятся ни на 2, ни на 5, где натуральные числа m,n и k удовлетворяют неравенству m≤k<n. Например, U( 1234567890, 107-10) = 24. Найдите U(1234567890987654321, 1012-10).
Задачу решили:
2
всего попыток:
2
Несколько комнат последовательно соединены автоматическими дверями, как показано на рисунке.
Двери открывают с помощью карт доступа. При этом каждую карту можно использовать лишь однажды: когда вы проходите в комнату, двери за вами автоматически закрываются, а карта не возвращается. Аппарат в начале маршрута может выдать вам в любое время любое количество карт без ограничений, однако система слежения не позволяет иметь на руках более трех карт одновременно. При нарушении этого правила срабатывает сигнал тревоги, а все двери запираются навсегда. Поэтому если вы возьмете при входе три карты и пойдете прямо к выходу, то в комнате №3 у вас карт не останется, и вы окажетесь в ней заперты с обеих сторон. К счастью, в каждой комнате есть сейф, куда можно складывать карты в любом количестве. Пользуясь этими сейфами, вы сможете достичь выхода. Например, вы можете войти в комнату № 1, использовав одну карту, положить вторую карту в сейф, а с помощью третьей карты вернуться к началу маршрута. Получив там в аппарате еще три карты, вы используете одну, чтобы войти в комнату №1 и взять там из сейфа оставленную карту. Теперь у вас в руках снова будет три карты, и этого достаточно, чтобы открыть три оставшиеся до выхода двери. Итак, вы можете пройти анфиладу из трех комнат, использовав всего 6 карт. 6 комнат можно пройти, используя 123 карты и не имея на руках более 3 карт одновременно. Пусть C - максимальное количество карт, которые можно иметь при себе. Пусть R - количество комнат, через которые нужно пройти от входа (“Start”) до выхода (“Finish”). Обозначим через M(C,R) минимальное количество карт, необходимых для прохода через R комнат, имея при себе не более C карт в каждый момент времени. Например, M(3,6)=123 и M(3,7)=366. Поэтому ΣM(3,R)=489 при 6≤R≤7. Можно подсчитать, что ΣM(5,R)=2841 при 1≤R≤15. Найдите ΣM(5,R) при 1≤R≤60.
Задачу решили:
9
всего попыток:
14
Вагоны поезда обозначены буквами латинского алфавита: A,B,C,D..., и последовательность вагонов в железнодорожном составе можно задать с помощью соответствующей цепочки букв. В правильно сформированном составе вагоны должны следовать алфавитном порядке. Добиваются этого на сортировочной станции, где установлен большой поворотный круг. Когда состав въезжает на круг, несколько последних вагонов отцепляют, после чего локомотив с остальными вагонами съезжает с круга. Вагоны, стоящие на круге, поворачивают на 180 градусов и вновь прицепляют в хвост состава, но уже в обратном порядке. Эту операцию повторяют несколько раз, пока не достигают желаемого результата. В некоторых случаях сформировать состав совсем просто. Например, когда исходный порядок вагонов ADCB, вагоны можно расцепить между A и D, затем развернуть фрагмент DCB, и, наконец, сцепить вагоны в нужном порядке. Результат достигается всего за один шаг, т.е. за один поворот круга на 180 градусов. Возможно, процесс можно оптимизировать, но машинист пользуется совсем простым алгоритмом. Сначала он стремиться прицепить вагон A следом за паровозом, затем следом за ним вагон B, и так далее. Машинист выяснил, что для состава из четырех вагонов потребуется не более 5 шагов. Максимальное количество - 5 операций - требуется для двух начальных последовательностей, а именно DACB и DBAC. Последовательности вагонов, требующие наибольшего количества операций для упорядочения, будем называть пессимальными. Порядок формирования состава для начальной последовательности DACB показан на рисунке.
Для состава из шести вагонов машинист составил список пессимальных последовательностей. Список содержал 24 последовательности. Последовательности он расположил в алфавитном порядке, и цепочка DFAECB оказалась на десятом месте от начала. Представьте, что вам поручили составить список пессимальных последовательностей для составов из 11 вагонов и упорядочить получившийся список в алфавитном порядке. На каком месте в списке окажется последовательность CIAKBGHFJDE?
Задачу решили:
3
всего попыток:
5
Последовательность Голомба {G(n)} определяют как единственную неубывающую последовательность натуральных чисел, содержащую ровно G(n) вхождений каждого натурального числа n.
Можно подсчитать, что G(210) = 87, G(220) = 6320, и что ΣG(2n) = 857297 при 1 ≤ n < 30. Найдите ΣG(2n)для 1 ≤ n < 60.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|